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Ockham’s razor is the idea that simpler hypotheses are to be preferred over more complex ones. In 
the context of medical diagnosis, this is taken to mean that when a patient has multiple symptoms, a 
single diagnosis should be sought that accounts for all the clinical features, rather than attributing a 
different diagnosis to each. This paper examines whether diagnostic parsimony can be justified by 
reference to probability theory. I argue that while attempts to offer universal justifications of 
diagnostic parsimony fail, a more constrained use of this diagnostic principle can be supported.  

 

 Introduction 
Ockham’s razor, sometimes referred to as the principle of parsimony, is an inferential 
principle attributed to the medieval scholar William of Ockham. In its original dictum the 
principle asserts that entities should not be multiplied unnecessarily in an explanation. This 
is typically understood as saying that in science simpler hypotheses are to be preferred over 
more complex ones. Medical diagnosis refers to the identification of a disease, condition, or 
injury from its signs and symptoms. In the context of medical diagnosis, the principle of 
parsimony is taken to mean that when a patient has multiple symptoms, a single diagnosis 
should be sought that accounts for all the clinical features, rather than attributing a different 
diagnosis to each (Schattner 2015). Diagnostic parsimony recommends choosing the 
simpler diagnostic hypothesis postulating fewer diseases in the case that two competing 
diagnostic hypotheses can both account for the clinical data. 

While Ockham’s razor is widely applied in medical diagnosis, it conflicts with other 
diagnostic principles invoked by physicians. Hickam’s dictum states that multiple 
symptoms may be due to more than one disease (Hilliard et al. 2004). An example, 
sometimes referred to as Saint’s triad, is the combination of hiatal hernia, gallbladder 
disease, and diverticulosis. Since there is no pathophysiological basis for the coexistence of 
these three diseases, Saint’s triad seems to demonstrate that more than one disease may be 
responsible for a patient’s symptoms.  

To complicate things further, Bayesianism is used as a framework for medical decision 
making (Sox, Higgins, and Owens 2013). Bayesians assess diagnostic hypotheses based on 
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their probabilities. More specifically, given a diagnostic hypothesis H and some set of 
symptoms S, Bayesians calculate the posterior (or post-test) probability of a diagnostic 
hypothesis 𝑃(𝐻|𝑆) by means of Bayes’s theorem, which states:  

 
𝑃(𝐻|𝑆) = (()|*)((*)

(())
  

 
where 𝑃(𝐻) refers to the prior (or pre-test) probability of the diagnostic hypothesis. As the 
posterior probability approaches 1, the diagnosis becomes nearly certain. Physicians would 
typically consider the diagnosis confirmed once its posterior probability exceeds a threshold 
of sufficient certainty (Richardson 2007). Bayesianism also offers an answer to the question 
of when to act (for example, order a diagnostic test, or prescribe treatment) in the face of 
diagnostic uncertainty. Bayesian decision theory says that physicians should make 
treatment decisions based on whether the posterior probability of a diagnosis exceeds a 
treatment threshold. According to this rule, physicians administer treatment if the 
probability of disease is above a specified threshold and withhold treatment otherwise. To 
calculate the thresholds, physicians have to take into account data on the effects of 
treatments, the diagnostic test’s sensitivity and specificity, and the harms of the test (Pauker 
and Kassirer 1980; Djulbegovic et al. 2015). 

This situation naturally leads to the question of how diagnostic parsimony relates to 
probability theory. One possible answer is that there is no formal relation to be found 
between different diagnostic principles, such as diagnostic parsimony and Bayesian 
reasoning. Based on this view, diagnostic principles form a rather loose collective. Ami 
Schattner (2015), for instance, lists a number of key diagnostic principles, such as Ockham’s 
razor, the law of imperfection, and the rule-out worst-case scenario principle, without 
explaining how potential trade-offs between different principles can be resolved. While such 
a view might be the right position to adopt, developments such as the use of artificial 
intelligence (AI) in medical diagnosis (Fraser, Coiera, and Wong 2018) force us to think 
more deeply about how to formalize and relate different diagnostic principles. This paper is 
a step in that direction. 

In this paper I examine the relationship between diagnostic parsimony and probabilistic 
reasoning. A first proposal, here referred to as the “universal approach,” suggests that 
diagnostic parsimony is directly implied by the probability calculus. Based on this view, a 
single diagnosis that accounts for all symptoms is to be preferred over attributing a different 
diagnosis to each symptom independently of the precise content of the simple and complex 
diagnostic hypotheses under consideration. A second proposal, defended here and referred 
to as the “domain-specific approach,” only offers a much weaker form of support for 
diagnostic parsimony. The domain-specific approach asserts that in some clinical 
applications diagnostic parsimony offers a valid principle for differential diagnosis in the 
sense that it agrees with Bayesian principles but fails to identify the diagnostic hypothesis 
with the highest posterior probability in other contexts. According to the domain-specific 
reading, the precise content of the competing simple and complex diagnostic hypotheses 
matters for assessing the validity of diagnostic parsimony. The agreement between 
diagnostic parsimony and Bayesian reasoning is contingent on empirical facts about the 
world and not a mathematical certainty. Or, to put it more bluntly, sometimes the simpler 
hypothesis does not adequately account for the complexity of the world. Importantly, both 
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the universal and the domain-specific approaches aim to derive diagnostic parsimony from 
Bayesian principles. Therefore, Bayesian epistemology is considered more fundamental 
than diagnostic parsimony. 

At this stage a comment on methodology is in order. This paper is concerned with 
normative aspects of medical decision making. It is widely held that Bayesianism (or 
expected utility theory) offers the correct normative standard for decision making under 
uncertainty (Savage 1954). This does not imply, however, that Bayesianism offers a correct 
descriptive theory of human decision making under uncertainty. Put differently, for the 
purpose of this paper, it is inconsequential that the kind of numerical calculations required 
by Bayesian decision theory are not regularly performed by physicians in medical practice. 
This paper engages in an ideal theory of medical decision making; it examines the epistemic 
status of diagnostic parsimony for an ideal Bayesian reasoner.1 

The structure of this paper is as follows: In section 2 I argue that the universal approach 
to justifying diagnostic parsimony is flawed. In particular, I point out that the reasoning 
underlying this justification leads to some unacceptable diagnostic conclusions. In contrast, 
I argue for the weaker domain-specific approach in section 3. While the latter view offers 
only limited support for diagnostic parsimony as a valid diagnostic principle, it resolves the 
need to justify apparent violations of the principle of diagnostic parsimony. The view 
defended here assigns diagnostic parsimony the status of a heuristic decision tool that 
sometimes agrees with more fundamental probabilistic considerations but should not by 
itself override probabilistic reasoning. More specifically, I suggest that diagnostic 
parsimony can serve as a heuristic when encountering young and otherwise healthy patients 
in general practice. However, this diagnostic principle is problematic in fields such as 
geriatrics when dealing with chronically ill patients with multiple morbidities. In section 4 
I discuss (and resolve) some further counterexamples to diagnostic parsimony suggested in 
the medical literature. In section 5 I relate my analysis of diagnostic parsimony to recent 
discussions of Ockham’s razor in the philosophical literature. Section 5 is primarily directed 
at a philosophical audience and can be skipped by the medical reader. In section 6 I 
conclude with some final comments. 
 

 The Universal Approach 
In the statistical literature it has been argued that Bayesian inference will automatically 
assign greater likelihood to a simpler hypothesis if the data are compatible with both a 
simpler and a more complex hypothesis (Jefferys and Berger 1992). David MacKay, for 
instance, asserts that “coherent inference (as embodied by Bayesian probability) 
automatically embodies Occam’s razor, quantitatively” (2003, 344).2 Turning to medical 
diagnosis, an example of the idea that Ockham’s razor falls directly out of the probability 
calculus is provided by Harold C. Sox, Michael C. Higgins, and Douglas K. Owens, who claim 
that diagnostic parsimony “is based on a basic theorem of probability theory” (2013, 19). 
More specifically, they write:  

 

 
1 For a further discussion of the relationship between normative and descriptive decision theory in medical 
decision making, see Djulbegovic et al. (2015). 
2 For a philosophical discussion of what is referred to as “Bayesian Ockham’s Razor” in the statistical literature, 
see Sober (2015). 
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The probability that two unrelated events occur simultaneously is the probability of one 
event multiplied by the probability of the other event. The product of the two 
probabilities is a much lower number than the probability of either event occurring by 
itself. The rule of parsimony is probably reliable in previously healthy people but may 
be less reliable in persons with several chronic diseases. In this case, two diagnostic 
hypotheses are less likely to be independent of each other, which increases the 
probability that both are present. (Sox, Higgins, and Owens 2013, 19) 
 

To illustrate, consider a person that presents with symptoms consistent with bacterial 
pneumonia but has also started coughing up small amounts of blood.3 Coughing up blood 
(hemoptysis) is an unusual, though well-known, complication of bacterial pneumonia. 
However, coughing up blood is also associated with having an airway tumor. In order to 
account for these observations, two possible explanations are considered: the simple (or 
unifying) diagnosis asserts that the patient has bacterial pneumonia; the complex (or 
disunifying) diagnosis asserts that the patient has bacterial pneumonia and an airway 
tumor. 

One might wonder why more possible explanations of the patient’s symptoms are not 
being considered in the example. For instance, one might also suspect that the patient 
suffers from tuberculosis infection of the lung. The reason is that an example involving only 
two distinct diseases seems to offer the best prospect for providing a Bayesian justification 
of Ockham’s razor in a diagnostic context. I return to the issue of using Ockham’s razor for 
diagnosing more possible diseases in section 4. A clinician might also ask for more details 
on the patient’s symptoms than provided in the example. For instance, how many times has 
the patient been coughing during the day? Is the cough worse at night? Has the cough 
worsened over the past two days? While further details of the patient’s symptoms would 
improve the realism of the example, the litmus test for this idealized (“toy”) example is to 
probe Sox, Higgins, and Owens’s proposed relationship between probability theory and 
diagnostic parsimony. It is not implied that a medical doctor will reach a final diagnosis 
based on the limited information provided in the example. Indeed, a doctor will, in all 
likelihood, contemplate further testing, such as ordering a chest X-ray, a chest CT scan, a 
sputum culture, a pulmonary arteriography, or a lung biopsy. I explore the relationship 
between probability theory, Ockham’s razor, and further testing in section 3. The question 
I pursue here is which of the two hypothesized diagnoses is more probable in light of the 
available evidence. 

Returning to the example, let us refer to a patient having bacterial pneumonia as event 
𝐷, and a patient having an airway tumor as event 𝐷-. Now, Sox, Higgins, and Owens seem 
to suggest that there is a probabilistic argument to the effect that the simple diagnostic 
hypothesis that the patient has bacterial pneumonia has higher probability than the 
complex hypothesis that the patient has both bacterial pneumonia and an airway tumor. If 
the two diagnostic hypotheses 𝐷, and 𝐷- are probabilistically independent, the probability 
of the joint event 𝐷, ∩ 𝐷- equals the product of the probabilities 𝑃(𝐷,) and 𝑃(𝐷-). Assuming 
that both probabilities—𝑃(𝐷,) and 𝑃(𝐷-)—are strictly larger than zero and strictly smaller 
than 1, then the product of the two probabilities is a much lower number than the probability 
of event 𝐷, occurring by itself. So, assuming that bacterial pneumonia and an airway tumor 

 
3 I would like to thank Mark Tonelli for suggesting the example. 
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are probabilistically independent for this patient, one has established a formal argument to 
the effect that the simple diagnosis has higher probability than the more complex one. 

Probabilistic independence, however, is a red herring in this context. It follows directly 
from the axioms of probability theory that the probability of the joint event 𝐷, ∩ 𝐷- can 
never be strictly larger than the probability of the single event 𝐷,. This result holds whether 
𝐷, and 𝐷- are probabilistically independent or not. As a consequence, the simple diagnostic 
hypothesis is always at least as probable as the more complex diagnostic hypothesis. This 
observation seems to offer a strong—indeed, I will argue “too strong”—justification for 
diagnostic parsimony. Independent of whether the patient is an otherwise healthy teenage 
girl, or a 70-year-old man with a long history of smoking, the diagnosis of bacterial 
pneumonia is always at least as probable as the hypothesis that the patient has both 
bacterial pneumonia and an airway tumor. If you only care about the most probable 
diagnostic hypothesis, there is never a principled reason to opt for the more complex 
diagnosis. Parsimony rules. 

Something has gone wrong. I will argue that the problem is to be found in the way we 
represent the simple diagnostic hypothesis under consideration. So far, we represented the 
simple diagnosis that the patient has bacterial pneumonia as diagnostic hypothesis 𝐻, = 𝐷,. 
Indeed, this representation naturally lends itself to Sox, Higgins, and Owens’s argument 
comparing the probability of a single event (or hypothesis) to the product of the 
probabilities of two events (or hypotheses). However, the diagnostic hypothesis 𝐻,  is 
indifferent as to whether the patient also has an airway tumor. More formally, the 
hypothesis 𝐻, = 𝐷, is logically equivalent to the hypothesis (𝐷, ∩ 𝐷-) ∪ (𝐷, ∩ ¬𝐷-); that is, 
the hypothesis 𝐻, refers to the situation that the patient either has bacterial pneumonia and 
an airway tumor 𝐷, ∩ 𝐷- or bacterial pneumonia but no airway tumor 𝐷, ∩ ¬𝐷-.  

What clinicians seem to have in mind when diagnosing bacterial pneumonia is that the 
patient has only bacterial pneumonia but not also an airway tumor. The simpler hypothesis 
of bacterial pneumonia is therefore adequately represented by means of the diagnostic 
hypothesis 𝐷, ∩ ¬𝐷- . This different representation of the hypothesis in question has 
important consequences for a formal justification of diagnostic parsimony. Both Sox, 
Higgins, and Owens’s argument invoking probabilistic independence and the argument 
invoking the monotonicity of the probability measure rely on representing the simple 
diagnostic hypothesis by means of a single hypothesis while the more complex hypothesis 
is represented by means of a conjunction that involves the simple hypothesis and another 
one. This line of reasoning and, hence, this justification of diagnostic parsimony is blocked 
when changing the representation of the simple hypothesis from 𝐷, to 𝐷, ∩ ¬𝐷-. 
 

 The Domain-Specific Approach 
Where does this leave the epistemic status of diagnostic parsimony? In the previous section 
I demonstrated that a universal application of this principle cannot be recommended. In 
this section I suggest that only a more limited use of diagnostic parsimony can be supported. 
A simple diagnostic hypothesis can have higher probability than a more complex hypothesis 
in one context but not in others; the assessment depends on what the simpler diagnostic 
hypothesis 𝐻, and the more complex diagnosis 𝐻- stand for. As a consequence, there is no 
truly general justification of diagnostic parsimony that is independent of the precise 
empirical content of the particular diagnostic hypotheses under consideration. Diagnostic 
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parsimony is only warranted in a domain-specific way—that is, depending on the diagnostic 
context at hand.  

Let us return to the patient presenting with symptoms consistent with bacterial 
pneumonia and who also coughs up blood. Again, consider the two possible diagnostic 
hypotheses 𝐷, ∩ 𝐷-  and 𝐷, ∩ ¬𝐷- . In order to assess the relative merits of these two 
diagnoses from a Bayesian perspective, one has to compare the posterior probabilities 
𝑃(𝐷, ∩ 𝐷-|𝑆) and 𝑃(𝐷, ∩ ¬𝐷-|𝑆), with 𝑆 denoting the whole set of symptoms shown by the 
patient. Comparing the numerical values of the probabilities 𝑃(𝐷, ∩ 𝐷-|𝑆)  and 𝑃(𝐷, ∩
¬𝐷-|𝑆)  amounts to comparing the two products 𝑃(𝑆|𝐷, ∩ 𝐷-) ∗ 𝑃(𝐷, ∩ 𝐷-)  and 
𝑃(𝑆|𝐷, ∩ ¬𝐷-) ∗ 𝑃(𝐷, ∩ ¬𝐷-). Since coughing up blood is seen as a less common symptom 
of bacterial pneumonia, it is assumed here that the likelihood 𝑃(𝑆|𝐷, ∩ 𝐷-)  is, at least 
somewhat, larger than the likelihood 𝑃(𝑆|𝐷, ∩ ¬𝐷-); that is, it is more probable to observe 
the whole set of symptoms if the patient has both bacterial pneumonia and an airway tumor 
than if the patient has only bacterial pneumonia. 

Having compared the likelihoods of the two competing diagnostic hypotheses, one has 
to assess their prior probabilities in a next step. What is the prior probability of having only 
bacterial pneumonia as opposed to having bacterial pneumonia and an airway tumor? Here, 
it seems crucial to learn more about the medical background of the patient under 
consideration in order to address this question. It is plausible to assume that the prior 
probability of a young and otherwise healthy patient having both bacterial pneumonia and 
an airway tumor is extremely low, while this probability significantly increases in an elderly 
patient with a history of smoking.  

Returning to our quantitative assessment of the two diagnostic hypotheses, consider 
first a young (and otherwise healthy) patient. While the likelihoods slightly favor the more 
complex hypothesis that the patient has both bacterial pneumonia and an airway tumor, the 
prior probabilities speak clearly in favor of the simpler hypothesis that the patient only has 
bacterial pneumonia. Assuming that the effect of the lower prior probability of the complex 
hypothesis counteracts its higher likelihood, the comparison of the posterior probabilities 
of the two hypotheses will favor the simpler hypothesis. This line of reasoning provides 
some support for using diagnostic parsimony as a heuristic tool in general practice when 
encountering young and otherwise healthy patients. Heuristics can assist our reasoning in 
complex scenarios but ultimately sound probabilistic reasoning should support our 
diagnoses. 

Turning to an elderly patient with a history of smoking, the likelihood assessment 
remains unchanged. Again, the more complex hypothesis postulating both the presence of 
bacterial pneumonia and an airway tumor scores somewhat better when only the 
likelihoods are considered. With regard to the prior probabilities of the two diagnostic 
hypotheses, it is plausible to assume that there is not such a dramatic numerical difference 
between 𝑃(𝐷, ∩ 𝐷-) and 𝑃(𝐷, ∩ ¬𝐷-) as it exists in the young patient. As a consequence, it 
becomes an open question whether the simpler or the more complex diagnostic hypothesis 
will be favored when comparing the products of the likelihood and prior probability of the 
two hypotheses. In any case, it is much less clear that the simpler diagnosis of bacterial 
pneumonia will come out on top for this patient in the Bayesian assessment. This analysis 
suggests that the use of diagnostic parsimony as a heuristic is problematic in fields such as 
geriatrics, where the clinician frequently encounters chronically ill patients with multiple 
morbidities.  
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So far, the discussion has focused on the question of which of two possible diagnoses 
has higher probability in the light of some observed symptoms. It is important to note that 
establishing that a diagnosis has a higher probability than a competitor does not imply that 
further diagnostic testing is to be ordered, or treatment for the condition to be initiated. 
Stephen G. Pauker and Jerome P. Kassirer provide criteria for making theses medical 
decisions within a Bayesian (or expected utility) framework (1975, 1980). They examine 
when a physician should prescribe treatment under the assumption that no further 
diagnostic information is available (1975). They establish a treatment threshold; that is, the 
value of the probability of a patient having disease where one is indifferent between treating 
and not treating. The threshold 𝑇 is given by:  

 
𝑇 = ,

,34546
, 

 
where Δ𝐵 denotes the net benefit—the difference in the expected utility of the outcomes if 
the diseased patient were treated or not treated—and Δ𝐻 is the net harm—the expected 
difference in the utility of the outcome if not treated versus if treated for a patient without 
the disease. The rational course of action for a clinician is to apply treatment if the 
probability of the disease exceeds threshold 𝑇 and to withhold treatment if the probability 
of disease is smaller than this threshold. Having established that a simple diagnosis has a 
higher probability than its more complex competitor does not imply that the probability of 
the simple diagnosis exceeds threshold 𝑇. Doing so will depend on the numerical values of 
the parameters entering the calculation of threshold 𝑇. So, while there is a meaningful way 
of talking about diagnostic parsimony in terms of diagnostic hypotheses having higher 
probability, there is a parting of ways between diagnostic parsimony and medical decision 
making.  

The same applies when more complex Bayesian models of medical decision making are 
considered. Pauker and Kassirer (1980) discuss the question of whether a clinician should: 
(a) continue observing the patient without treatment or testing; (b) perform a diagnostic 
test and subsequently base the treatment on the test result; or (c) administer treatment 
without requesting a test. They identify two thresholds for medical decision making: a 
testing threshold and test-treatment threshold. Based on the model, the clinician should 
treat the patient without further testing if the posterior probability of the disease is larger 
than the testing threshold but should continue to observe the patient without ordering a test 
or treatment if the probability is smaller than the test-treatment threshold. The clinician 
should request a test if the probability of the disease is between the testing and the test-
treatment thresholds. Again, having established that a simpler diagnosis has higher 
probability than a more complex diagnosis, based on a set of observed symptoms, does not 
imply whether a threshold has been reached and, if so, which one. Diagnostic parsimony is 
an evidential principle not directly linked to medical decision making, as the latter requires 
more than information about the posterior probabilities of diagnostic hypotheses.  

The domain-specific approach outlined above sits fairly well with views expressed in 
some recent exchanges on diagnostic parsimony in the medical literature. Commenting on 
a survey by Schattner (2015) that lists key principles for teaching clinical medicine, 
including the law of parsimony, Oscar Jolobe (2016) argues that in some medical contexts 
diagnostic parsimony should be rejected. He refers to the example of immunocompromised 
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patients, such as those with HIV and AIDS, in which bacterial pneumonia can coexist with 
active pulmonary tuberculosis. In response, Schattner (2016) acknowledges that active 
tuberculosis can coexist with other infections and, as such, constitutes a counterexample to 
diagnostic parsimony. More generally, while Schattner considers diagnostic parsimony an 
important concept in medicine, he accepts that exceptions to the principle are rather 
abundant. 

If diagnostic parsimony merely constitutes a heuristic for medical decision making that 
is based on empirical regularities about relative frequencies of diseases and their symptoms 
observed in medical practice, it should not come as a surprise that there can be exceptions 
to the “law” of parsimony. Indeed, the view outlined in this paper resolves the need to justify 
apparent violations of diagnostic parsimony. Matters would be different if there existed a 
universal justification for diagnostic parsimony based on the probability calculus. In that 
case, any exception to the principle of parsimony would be on pain of violating the axioms 
of probability that are widely held to embody the principles of rational reasoning under 
uncertainty. 
 

 Further Challenges to Diagnostic Parsimony 
So far, the discussion has focused on diagnostic hypotheses involving two distinct diseases, 
bacterial pneumonia and an airway tumor. This can be considered as the most promising 
scenario for providing a universal justification of diagnostic parsimony. Once three different 
diseases are considered, the prospect of a universal justification looks more bleak. Indeed, 
Sox, Higgins, and Owens (2013) point out that having two common diseases can be more 
probable than having a single but rare disease. Marta Freixa et al. (2019) go one step further 
by describing a case of two rare diseases occurring in a patient, which they consider to be in 
violation of diagnostic parsimony. 

In this section I contrast these two scenarios and argue that while the case of comparing 
two common diseases with one single rare disease poses a challenge for diagnostic 
parsimony, the second case of comparing two rare diseases with a single rare disease does 
not. Let us consider three diseases: 𝐷,, 𝐷-, and 𝐷9. To begin with, assume that 𝐷, is a rare 
disease whereas 𝐷- and 𝐷9 are both common diseases. Now, consider the two diagnostic 
hypotheses 𝐻, = 𝐷, ∩ ¬𝐷- ∩ ¬𝐷9 and 𝐻- = ¬𝐷, ∩ 𝐷- ∩ 𝐷9 and suppose that the likelihoods 
𝑃(𝑆|𝐻,) and 𝑃(𝑆|𝐻-) are approximately equal, where 𝑆 denotes the set of symptoms of the 
patient. Both hypotheses 𝐻, and 𝐻- account for the observed symptoms reasonably well. 
Under these assumptions, it is plausible to assume that the more complex hypothesis 𝐻- 
has a higher posterior probability than the simple hypothesis 𝐻,. If diseases 𝐷,, 𝐷-, and 𝐷9 
are probabilistically independent, this would require that the product 𝑃(¬𝐷,) ∗ 𝑃(𝐷-) ∗
𝑃(𝐷9) exceeds the product 𝑃(𝐷,) ∗ 𝑃(¬𝐷-) ∗ 𝑃(¬𝐷9). In that case, a physician opting for the 
most probable diagnosis should choose the more complex diagnosis 𝐻-  instead of the 
simpler hypothesis 𝐻,. Such a diagnostic decision is in conflict with diagnostic parsimony; 
it constitutes a systematic violation of this principle. 

In the second example, we assume that the diseases 𝐷-  and 𝐷9  are rare, rather than 
common. Again, we presume that the likelihoods of diagnoses 𝐻, = 𝐷, ∩ ¬𝐷- ∩ ¬𝐷9 and 
𝐻- = ¬𝐷, ∩ 𝐷- ∩ 𝐷9	are approximately equal, and that the diseases 𝐷, , 𝐷- , and 𝐷9  are 
probabilistically independent. In that case, it is plausible to assume that the simpler 
hypothesis 𝐻, has the larger posterior probability than the more complex hypothesis 𝐻- due 



Bengt Autzen  |  9 
 

Philosophy of Medicine  |  DOI 10.5195/pom.2022.123 | Volume 3 | Issue 1 | pp.1–12 

to the product of prior probabilities 𝑃(¬𝐷,) ∗ 𝑃(𝐷-) ∗ 𝑃(𝐷9) being smaller than the product 
𝑃(𝐷,) ∗ 𝑃(¬𝐷-) ∗ 𝑃(¬𝐷9) . As a consequence, a Bayesian clinician opting for the most 
probable diagnosis would prefer the simpler diagnosis 𝐻,  over the more complex 
hypothesis 𝐻- in line with diagnostic parsimony. 

Now, Freixa et al. seem to suggest that the case of a patient with two rare tumors 
challenges diagnostic parsimony and speaks in favor of Hickam’s dictum. However, they do 
not discuss an alternative diagnostic hypothesis invoking only one disease in competition 
with the diagnosis that the patient has two rare tumors simultaneously. This is problematic 
if their example is considered a case in favor of Hickam’s dictum and against Ockham’s 
razor. Diagnostic parsimony presumes that there are two diagnoses, a simple one and a 
complex one, which are both consistent with the symptoms. I therefore resist the conclusion 
that the case report speaks against diagnostic parsimony. Rather, the example demonstrates 
that improbable events happen. This in itself, however, does not invalidate an inference 
principle such as diagnostic parsimony. Inductive inference is not foolproof.  

Consider an analogy. It is very improbable that a person will win the lottery twice but it 
can (and does) happen. However, this does not invalidate the view that when forming beliefs 
about the world in the light of our evidence, one should opt for a more probable alternative, 
such as the hypothesis that one does not win the lottery twice. Similarly, the patient with 
two rare and probabilistically independent tumors has “won” twice in a lottery with very 
unfortunate outcomes. When deciding on the most plausible diagnosis, opting for the most 
probable diagnostic hypothesis looks like a rational choice. This view is not undermined by 
the fact that sometimes improbable things happen. 

Matters could, of course, be different. Again, assume that there is a single disease 𝐷, 
that is consistent with the symptoms in Freixa et al.’s case report. Now, suppose further that 
the likelihood of this disease given the symptoms 𝑆 is very small. Even though disease 𝐷, 
can account for all the observed symptoms observed in the patient, these symptoms are very 
uncommon given disease 𝐷,. In that case, it could well be that the posterior probability of 
diagnosis 𝐻- invoking the two diseases 𝐷- and 𝐷9 exceeds the posterior probability of the 
simple diagnosis 𝐻,. The most probable diagnosis then postulates that the patient has two 
rare tumors. Hickam’s dictum would be supported by Bayesian reasoning.  
 

 Philosophical Perspectives on Parsimony 
It is instructive to relate the present discussion to some prominent views on parsimony 
found in the philosophical literature. Elliott Sober (2015) makes the case for a reductionist 
view on parsimony, according to which Ockham’s razor is epistemically relevant only 
insofar as it contributes to the achievement of some more fundamental epistemic goal.4 For 
instance, Bayesians primarily care about the posterior probabilities of hypotheses; 
considerations of parsimony are only derived from these primary considerations. Both the 
universal and the domain-specific approach of justifying diagnostic parsimony are 
examples of a reductionist view on parsimony. Take the domain-specific approach: by 
saying that, in certain contexts, diagnostic parsimony can reliably assist in identifying the 
diagnostic hypothesis with the higher posterior probability, parsimony is epistemically 

 
4 For an early statement of Sober’s reductionist view on parsimony, see Sober (1990). 
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relevant insofar as it contributes to the epistemic goals of a Bayesian clinician. The same 
applies to the universal approach. 

The previous discussion suggests a distinction with regard to the kind of reductive 
relationship between parsimony and Bayesianism. Reductionism about parsimony requires 
that the epistemic value of Ockham’s razor is derived from some more fundamental 
epistemic principles, such as identifying hypotheses with high posterior probability. Now, 
it could be that Ockham’s razor always serves this more fundamental epistemic goal, or that 
it does so only in certain situations. The former scenario might be referred to as universal 
reductionism; the latter might be called domain-specific reductionism. While in the former 
case, the recommendations of Ockham’s razor are always in line with the Bayesian analysis, 
in the latter case the two can part ways. If the principle of parsimony was implied by a 
theorem of probability theory, as suggested by the universal approach, a Bayesian clinician 
could not avoid applying Ockham’s razor as long as she correctly computes the probabilities 
figuring in Bayes’s theorem. The picture that emerges from the present discussion of 
diagnostic parsimony, however, suggests otherwise. Diagnostic parsimony and a Bayesian 
analysis of diagnostic hypotheses can part ways. Clinicians applying diagnostic parsimony 
and clinicians adopting a Bayesian framework can come to different diagnoses. 

In his earlier writings, Sober distinguishes between parsimony being a “local” and a 
“global” virtue in scientific reasoning (1988). Parsimony, understood as a global epistemic 
virtue, applies to all fields of human inquiry and means the same thing across these 
domains. Put simply, the principle of parsimony is part and parcel of good scientific 
inference. Traditionally, this view on parsimony has figured prominently in the 
philosophical discussion—for example, Popper (1959); Kemeny (1953); and Goodman 
(1958). In contrast, parsimony seen as a local epistemic virtue means one thing in one 
domain while it may mean something different in another domain. Additionally, whether a 
more parsimonious hypothesis is to be preferred is also a local matter. Based on the latter 
reading, Ockham’s razor is not a universally valid rule of scientific inference.  

The contrast between global and local parsimony clearly sits well with the distinction 
between universal and domain-specific reductionism. In particular, the domain-specific 
approach to diagnostic parsimony instantiates Sober’s reductive, local understanding of 
parsimony in the context of medical diagnosis. It is worth noting, however, that parsimony 
could be a global epistemic virtue but the universal approach to diagnostic parsimony, as 
understood here, could still not hold. For instance, the principle of parsimony could be a 
central principle in scientific reasoning without being closely linked to Bayesianism for the 
simple reason that Bayesianism does not provide the right framework for scientific 
inference—an idea that might seem attractive to non-Bayesian philosophers of science such 
as Deborah G. Mayo (1996). Sober’s distinction between local and global parsimony is 
applied by Anya Plutynski (2005) to shed light on the Fisher-Wright debate in evolutionary 
biology. Plutynski defends the view that parsimony is a local epistemic virtue and argues 
that some participants in the Fisher-Wright debate in effect appeal to facts about the prior 
probability or likelihood of scientific hypotheses when they claim that Fisher’s theory is 
more parsimonious than its competitor. The present paper can be seen as a further example 
illustrating the local epistemic virtue of parsimony in a particular scientific application—
here, medical diagnosis.  
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 Conclusion 
This paper has examined diagnostic parsimony; that is, a medical application of Ockham’s 
razor. I have argued two points, one negative and one positive. First, I argued that diagnostic 
parsimony is not implied by the probability calculus. When thought through, this approach 
will lead to some unacceptable diagnostic conclusions by always prioritizing simpler 
diagnostic hypotheses. Second, I offered some support for what I called a domain-specific 
approach to justifying diagnostic parsimony. According to this view, diagnostic parsimony 
can serve as a heuristic for medical diagnosis to the Bayesian clinician in some but not all 
applications. This view coincides with the local, reductionist reading of parsimony initially 
defended by Sober in the philosophical literature. The domain-specific approach to 
diagnostic parsimony instantiates the view that parsimony is a local epistemic virtue in 
scientific reasoning. 
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