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This paper develops an account of the opacity problem in medical machine learning (ML). Guided by 
pragmatist assumptions, I argue that opacity in ML models is problematic insofar as it potentially 
undermines the achievement of two key purposes: ensuring generalizability and optimizing 
clinician–machine decision-making. Three opacity amelioration strategies are examined, with 
explainable artificial intelligence (XAI) as the predominant approach, challenged by two revisionary 
strategies in the form of reliabilism and interpretability by design. Comparing the three strategies, 
I argue that interpretability by design is most promising to overcome opacity in medical ML. Looking 
beyond the individual opacity amelioration strategies, the paper also contributes to a deeper 
understanding of the problem space and the solution space regarding opacity in medical ML.  

 

 Introduction 
The problem of opacity is key to understanding the necessary assurances for implementing 
machine learning (ML) models into clinical environments. Various studies highlight the 
potential benefit of ML models in assisting image-based medical diagnosis, predicting acute 
illness, or treatment planning (Esteva et al. 2017; Tomašev et al. 2019; Yala et al. 2022. 
However, not knowing what predictors are used by given ML models gives rise to concerns 
of malfunction, in what can be considered a high-stakes setting. While the problem is well 
established, there is little agreement on the appropriate opacity mitigation strategy—
culminating in different paradigms.  

So far, the prevailing strategy is to explain the functioning of ML models post hoc, either 
through statistical summaries or visualizations of the predictors for single instances (for a 
review, see Arrieta et al. 2020). Unlike explainable artificial intelligence (XAI), revisionary 
strategies seek to overcome the problem by replacing opacity with a different concept, 
deemed more crucial. One such candidate, reliabilism, is guided by the assumption that 
accuracy trumps explainability (London 2019; Durán and Jongsma 2021). Its rationale is a 
consistency argument: ML models should be evaluated according to the same evidential 
standards as (other) medical interventions. Conversely, this entails that certain kinds of 

Abstract 

Perspectives 



The Allure of Simplicity: On Interpretable  
Machine Learning Models in Healthcare  |  2 

 

Philosophy of Medicine  |  DOI 10.5195/pom.2023.139 | Volume 4 | Issue 1 | pp.1–24 

opacity are acceptable—whether the underlying physiological mechanisms of a drug or 
model opacity—if the reliability and clinical benefit of a given intervention has been 
established.  

The second revisionary strand has arisen out of skepticism regarding current XAI 
methods (for example, saliency maps) since they have been shown to be easily foolable in 
sanity checks (Adebayo et al. 2018). Hence, they are claimed to be (necessarily) misleading. 
Rather than deploying XAI methods, the proposed solution is to use models that are 
interpretable by design (Rudin 2019; Babic et al. 2021). This includes classes of models 
defined through certain structural properties (for example, sparsity and linearity), or those 
that possess built-in domain knowledge.  

This paper’s objective is to define the scope and to provide a (conditional) defense of 
using interpretable ML models within the context of clinical medicine. A secondary 
objective is to explore the dialectic among the different opacity mitigation strategies in order 
to gain a better understanding of the what the problem space is and what appropriate 
solutions are to mitigate opacity in medical ML.  

Calls for interpretability are intuitively appealing. All else being equal, philosophers and 
scientists usually have a preference for simpler theories—deemed more elegant or closer to 
the truth (Genin 2018). That said, once we move beyond toy examples, there is a need to 
provide thorough grounding for model interpretability in medical ML. In particular, it is not 
yet adequately understood what the distinct epistemic properties of interpretable models 
are, and how their benefits and downsides compare to XAI or reliabilist approaches. To add 
nuance to the picture, I distinguish between two variants of interpretability by design, 
strong (where the idea is to use simple model architectures) and moderate (where the idea 
typically is to blend deep learning with interpretable model components). While strong 
interpretability by design may not be feasible, the moderate counterpart fares considerably 
better with regard to clinical purposes.  

To underscore the perks and possible perils of interpretability by design, I draw on a 
recent study by Alina Jade Barnett et al. (2021), using an interpretable neural network that 
incorporates case-based reasoning strategies of radiologists to examine mammographic 
images. This example showcases the core assumptions of interpretable models and 
facilitates delineating them from XAI methods.  

The paper proceeds as follows: Section 2 establishes the opacity problem in medical ML. 
Here, I rely on a pragmatist strategy, analyzing how the achievement of certain purposes is 
negatively impacted by the involvement of opaque ML models (Parker 2020). Section 3 
discusses XAI (with an emphasis on saliency maps) and reliabilism as opacity mitigation 
strategies within the context of clinical medicine, with the aim of contrasting them with the 
interpretability approach. One particular problem for reliabilism is that there are stark 
discontinuities regarding the transferability of claims about ML models’ performance, when 
compared to causal claims about the effects of medical drugs, established via randomized 
controlled trials (RCTs). Finally, section 4 addresses interpretability by design. The paper 
then concludes by defining desiderata for interpretability by design, ensuring that ML 
models can be implemented in clinical environments in a meaningful way.  
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 Opacity in Medical Machine Learning 
This section’s objective is to establish conceptual common ground by mapping out some key 
assumptions in the philosophy of ML concerning the opacity problem. The recent advances 
in medical applications of ML can be characterized as by-products of more general 
breakthroughs in deep learning—relating to models composed of multiple layers of artificial 
neurons—which have proved to be particularly powerful at computer vision tasks (LeCun, 
Bengio, and Hinton 2015; Buckner 2019). ML researchers and philosophers alike widely 
agree that deep learning models are opaque. However, opacity is not a monolithic concept; 
different types and causes can be distinguished. Kathleen A. Creel (2020) provides a useful 
taxonomy, distinguishing between functional opacity (not knowing how the model 
functions as a whole), structural opacity (not knowing how the model is realized in code), 
and run opacity (not knowing how single instances were realized).1 This model-centric 
perspective on opacity can be expanded by accounting for its political (corporate 
concealment) or user-centric (data illiteracy) dimensions (Burrell 2016). For the purposes 
of this paper, functional and run opacity are particularly relevant—in conjunction with 
user-centric aspects.  

Concerning the causes of opacity, the common denominator is model complexity—
defined by the size of parameters. Since deep learning models consist of billions of 
parameters, it is difficult to infer how and why they arrive at a given prediction/decision 
(Lipton 2018; Zednik 2021). Besides sheer complexity, other causes are the lack of domain 
knowledge explicitly encoded into the model, and the nonlinear structure of many models 
(Rudin 2019).  

Furthermore, deep learning models themselves are not theoretically well understood, in 
particular with regard to how they achieve their generalization properties.2 On a behavioral 
level, deep learning models have achieved high predictive performance by exploiting 
various heuristics. As a case in point, they have been shown to be biased toward image 
textures (for example, the lighting conditions of a medical image) over shape (for example, 
the structure of a tumor) in image-recognition tasks. This is in stark contrast to human 
behavior (Geirhos et al. 2018). Taken together, these factors make it challenging to 
understand model behavior and to provide reliable performance guarantees. As discussed 
below, the reliance on heuristics, in particular, poses a threat for the reliability of ML models 
in clinical environments. 
 

 Specifying the Opacity Problem(s) in Medical Machine Learning 
ML models are by no means the only thing that is opaque in clinical medicine. The 
physiology of the human body, the causes of diseases, and the functioning of drugs are often 
not well understood. Similarly, very few people—and certainly not most clinicians—are able 
to explain the functioning of medical imaging technologies (such as ultrasound or computed 
tomography). And yet, despite all skeptical concerns (Ioannidis 2005; Stegenga 2018), 

 
1 I consider the distinction between functional and run opacity to be tantamount to the global/local distinction 
in ML research.  
2 Most profoundly, they seem to defy the core assumption of statistical learning theory, assuming that there is a 
trade-off between the complexity of a model and its performance on data from outside its training sample. The 
crux of the matter is that the performance of deep learning models seems to continue to improve, no matter how 
deep we allow the model to become, even as the neural nets effectively memorize the training sample. So far, 
there is no widely accepted mathematical explanation for this phenomenon (see Zhang et al. 2021 for a review).  
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clinical medicine seems to work reasonably well. So why is model opacity considered 
problematic, whereas other kinds of opacity are tolerable? 

To tackle this question, my approach falls squarely into the pragmatist camp, which can 
best be characterized by an instrumental stance regarding model opacity (Lipton 2018; 
Krishnan 2020; Zednik 2021; Nyrup and Robinson 2022). According to this view, opacity 
is problematic when it obstructs the achievement of certain purposes or goals. A 
prerequisite for overcoming opacity is therefore to specify what these purposes are, and 
which stakeholders are involved—in order to get a better grip on the success conditions. 
Pragmatism is particularly well suited, given that clinical medicine is ultimately driven by 
instrumental considerations (improving patients’ health conditions). Thus understood, 
there are also parallels with the adequacy-for-purpose view in the modeling literature in 
philosophy of science (Parker 2020).  

My assertion is that, within the context of clinical medicine, there are two key purposes, 
whose achievement is potentially impacted by opaque ML models: ensuring 
generalizability and optimizing clinician–machine decision-making.  
 

2.1.1 Generalizabilty 
The goal in training ML models is to find a (parameterized) decision-function, minimizing 
error when predicting a dependent variable Y over independent variables X within a joint 
probability distribution D. Their predictive performance is evaluated by showing the model 
a test set of unseen data, using various classification metrics. However, while many ML 
models surpass the diagnostic accuracy of expert clinicians under training conditions, 
distribution shifts are a key concern regarding the transferability of an ML model’s 
performance when implemented into clinical environments. If a hospital labels data 
differently, applies the ML model to different patient demographics, or uses cameras to 
make medical images other than those the model was trained with, the result can be 
malfunctions by the model (see Finlayson et al. 2021 for a review). And while distribution 
shifts threaten the performance of any statistical model, deep learning models are 
particularly vulnerable to them in light of the myriad input variables.  

While distribution shifts are a general source of performative instability in ML models, 
a more particular concern is that the ML model’s decision-function overfits to the 
idiosyncrasies of the training data. In turn, it misses relevant variables, hindering the 
generalizability of the predicted output beyond training conditions. More specifically, deep 
learning models are prone to achieving high predictive performance by exploiting 
shortsighted learning strategies (Lapushkin et al. 2019; Geirhos et al. 2020). To give a 
drastic example, a recent study by Alex J. DeGrave, Joseph D. Janizek, and Su-In Lee 
(2021), assessing deep learning models used to predict Covid-19 from chest radiographs, 
found that—despite achieving high diagnostic accuracy—many of the models relied on 
confounders (for example, textual markers, image edges, or patients’ shoulder position), 
rather than medical pathology. If gone unnoticed, failures in the predictive performance, 
induced by distribution shifts, are likely to result in incorrect diagnoses and treatment 
choices. It is therefore crucial to detect potential confounders in the model as a safeguard 
for ensuring the generalizability of ML models.  

Generalizability issues are affected by (functional) opacity in that it impacts model 
control in the auditing process. However, strictly speaking, transparency is neither 
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necessary nor sufficient to achieve good generalization properties. For example, the model 
could be trained with even larger and more diverse data, so that it virtually does not have to 
leave training conditions. Alternatively, we could augment the training data such that we 
remove all confounding information. However, neither of these strategies is likely to 
succeed in isolation. First, unlike ML models that are supposed to discern, say, cats from 
dogs, one usually works with smaller datasets in medicine. This is especially since sharing 
medical data is impeded by privacy restrictions. Second, there are typically too many 
variables that can be exploited as confounders to remove all of them during the data 
processing. 
 

2.1.2 Optimizing Clinician–Machine Decision-Making 
ML models are tools, used for specific purposes. In clinical environments, the purpose is 
typically to provide decision support to clinicians. The model will present its predicted 
output to the clinician (for example, by way of a binary classification, a probability score, or 
a posterior distribution), with the clinician making the final diagnosis, and then proceeding 
to determine the appropriate treatment—along with the patient.  

The decision support can come in different forms, distinguishable based on the 
epistemic relationship between the ML model and the clinician. In a symmetric epistemic 
relationship, the ML model acts as a peer to the clinician, and both are roughly equal in 
terms of diagnostic accuracy. A pertinent example here is a study by Scott Mayer McKinney 
et al. (2020), evaluating the accuracy and efficiency of an ML model, used as a second reader 
in detecting breast cancer from mammograms. By contrast, asymmetric epistemic 
relationships refer to cases where the predictive performance of the ML model is vastly 
superior to the clinician. Examples are ML models used to predict kidney failure based on 
patient health records (Tomašev et al. 2019), or the progression of macular degeneration 
(Yim et al. 2020). This asymmetry is closely tied to the extensive number of relevant 
predictors, making it challenging for humans to compute reliable estimates.  

Opacity in ML models poses several obstacles to clinician–machine decision-making. 
First, without knowing whether the predictors used by the ML model are coherent with 
medical knowledge, it is unclear when decisions made by the ML model should be 
overridden. A large body of empirical studies examines how clinicians are led astray by 
faulty algorithmic diagnoses (for example, Tschandl et al. 2020; Gaube et al. 2021). This 
can be particularly problematic in edge cases or rare diseases, in which disagreements 
between the ML model and the clinician can be difficult to resolve. Moreover, even single 
mistakes—induced by the ML model—can have substantial consequences for patients’ 
health. Opacity can be morally problematic in cases where a clinician violates due diligence, 
making treatment decisions based on an ML model’s prediction, while being in the dark 
about the underlying factors. Finally, junior clinicians have been shown to defer to the 
model output, and opacity can therefore be detrimental for pedagogical purposes, since it 
hinders advancement to the expert level (Genin and Grote 2021; Grote and Berens 2022). 
When assessing adequate opacity amelioration strategies, it is important to keep in mind 
pragmatic factors—such as time constraints and whether a given strategy increases or 
reduces the clinician’s mental load (see also Ehrmann et al. 2022).  

While I deem generalizability and optimizing clinician–machine decision-making to 
be the key purposes potentially undermined by opacity in ML models, this list is not 
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exhaustive. As Boris Babic et al. (2021) argue, a prerequisite for procedurally fair triage 
algorithms is to ensure that the ML model registers clinically meaningful variables. 
Furthermore, it is, of course, important to include the patient’s perspective. Especially here, 
the threat is that patients are unable to engage in shared decision-making concerning 
treatment decisions, which is critical with regard to the different values entailed in 
treatment choices—hence the view that the involvement of the ML model reintroduces 
paternalism in the clinician–patient relationship (McDougall 2019; Bjerring and Busch 
2021). Contrary to what has been suggested, I do not think that enabling patients to make 
informed decisions is best achieved by means of techniques that generate genuine 
explanations of the model output, tailored to patients (cf. Watson et al. 2019). Rather, 
higher-order information regarding the functionality of the model should be either 
conveyed via informed consent forms (see Kiener 2021), or communicated by the clinician, 
who becomes a mediator between the ML model and the patient. Having to interpret 
medical information—typically conveyed through visualizations or statistical summaries—
puts too much of a burden on patients. Lastly, since the focus here is on clinical applicability, 
I do not consider how opaque ML models inhibit the process of scientific inquiry (Zednik 
and Boelsen 2022). Building on this specification of purposes, potentially undermined by 
opacity in ML models, I now turn to evaluating different opacity amelioration strategies.  
 

 Overcoming Opacity in Medical Machine Learning 
This section discusses two opacity amelioration strategies for the application of ML models 
in clinical medicine: XAI as the standard paradigm and reliabilism as its fiercest competitor 
currently. My aim is twofold: First, I evaluate the two strategies in terms of how they enable 
the reliable achievement of generalizability and optimizing clinician–machine decision-
making. Second, both strategies will be used as contrast classes to the interpretable 
modeling approach in the subsequent section.  
 

 Explainable Artificial Intelligence  
So far, I have argued that, for the reasons noted above, model performance in medical ML 
cannot be assumed to be generalizable, yet opacity limits assessing generalizability. A 
popular strategy to overcome opacity is to use various XAI methods. I use XAI as a bundle 
term, denoting different methods that all seek to overcome opacity in ML models by 
explaining the predictors for single instances post hoc.3 Among the most common methods 
are Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro, Singh, and 
Guestrin 2016) and Shapley Additive Explanations (SHAP) (Lundberg and Lee 2017). Even 
though the explanations are generated by distinct mathematical techniques (for an 
accessible overview, see Molnar 2020), both methods have in common that they provide 
statistical summaries of the key variables in a given prediction. However, their visualization 
of the explanation may differ. To give a toy example: if a given ML model predicts that a 
patient in the intensive care unit is at high risk of suffering from kidney failure, the 
corresponding explanation from LIME might look as follows—25% advanced age, 20% high 

 
3 Note that this definition of XAI may seem narrow, compared to wider definitions provided in many review 
papers in computer science. However, my aim in this section is not to provide an extensive taxonomy of XAI 
approaches but to capture the dialectic of different strategies that all seek to overcome opacity in medical ML.  
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blood pressure, 15% high creatinine levels, and so on. SHAP, in turn, will provide plots that 
explain the value/importance of key variables for the predicted output. In contrast, 
counterfactual explanations try to examine how small changes to the input variables (say, a 
higher creatinine level by X) affect the predicted output (risk of kidney failure). By detecting 
counterfactual dependencies, the goal is to gain a better understanding of why the model 
arrives at its predictions (Wachter, Mittelstadt, and Russell 2018). 

However, rather than providing a survey of different XAI methods (for reviews, see 
Gilpin et al. 2018; Arrieta et al. 2020; Molnar 2020), my emphasis is on saliency maps, a 
popular technique for vision-based medical diagnosis. Indeed, since many medical ML 
applications revolve around image recognition, one will encounter few research papers in 
which saliency maps have not been used at some point.4  

Saliency maps highlight regions in images, based on which deep learning models make 
their predictions. More precisely, they compute saliency scores for input pixels according to 
their network outputs (Montavon, Samek, and Müller 2018).5 As an illustration, if an ML 
model detects a given eye disease from a medical image, the relevant explanation could take 
the form of a heatmap, either marking the salient regions in red, or grading the different 
regions in darker or brighter colors—depending on how relevant they are for the predicted 
output.  

For medical purposes, the appeal of saliency maps is tied to their ability to explain the 
model behavior in a way that accounts for the background knowledge of medical 
professionals. Medical diagnosis, in particular, is grounded in perceptual skills that 
clinicians have acquired over the course of many years of practice, resulting in non-
inferential reasoning processes and a distinct visual phenomenology (Stokes 2021).6 This 
makes saliency maps a particularly useful heuristic for ensuring that an ML model’s 
diagnostic/prognostic criteria are well aligned with medical background knowledge.  

That said, saliency maps have many caveats. These become apparent when considering 
to what extent they facilitate overcoming the opacity-induced problems of evaluating 
generalizability and optimizing clinician–machine decision-making. Let us consider each 
in turn. 

A prerequisite for evaluating generalizability is that ML developers have knowledge of 
the model’s functioning of the whole: which variables are used as predictors, how the 
different variables interact, whether the model is well structured, and so on. And even then, 
performative instability due to distribution shifts can be challenging to detect, since the 
assessment of the model needs to account for information external to the model (for 
example, how patient demographics might have changed over time). While saliency maps 
can be very useful in spotting glaring cases of shortcut learning (say, the model uses image 
markers as predictors for Covid-19), they will not be of much help in achieving a holistic 
understanding of the model’s functioning. This is because the visualization of areas of 
interest is typically coarse-grained, and is confined to explaining the predictors for single 
instances. If anything, functional opacity, as opposed to run opacity, could be mitigated to 
some extent by clustering the output of the saliency map across n instances. With regard to 

 
4 However, it has been shown that XAI techniques such as LIME, SHAP, and counterfactual explanations suffer 
from reliability issues, like those I will discuss with regard to saliency maps (Slack et al. 2020, 2021a). 
5 For an accessible discussion of technicalities in saliency maps, see Zednik (2021).  
6 See also Grote and Berens (2022) and Nyrup and Robinson (2022) on the importance of accounting for 
clinicians’ tacit knowledge for successful algorithmic explanations.  
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overcoming functional opacity, the role of saliency maps can be best described as a heuristic, 
indicating which areas/variables play an important role for the model output. 

A study by Nenad Tomašev et al. (2019), training a deep learning model to predict acute 
kidney injury (AKI) in patients within the next 48 hours, is indicative about the possibilities 
and limitations in obtaining knowledge of the model’s functioning of the whole, especially 
since a nuanced description of the evaluation process is provided by the researchers. They 
try to ensure the clinical confidence of the ML model by assessing its predictive performance 
for auxiliary targets (for example, known biomarkers for AKI) and by setting the weights of 
individual variables to zero—to see how it affects the predicted output (see also Tomašev et 
al. 2021). These techniques facilitate capturing counterfactual dependencies and thus can 
be deemed a useful sanity check. However, considering the myriad different variables used 
as input data, it is safe to say that this does not translate into guarantees for the model’s 
performative stability. The study also illustrates a more conceptual problem about 
ameliorating functional opacity. Medical knowledge is typically incomplete. For many 
diseases, no known biomarkers exist and, given the complexity of physiological processes, 
it can be difficult to assess whether the relationship between variables is causally relevant 
or spurious.  

A different concern arises about the faithfulness of the explanation provided by the 
saliency map to the original model.7 Julius Adebayo et al. (2018) conduct a perturbation 
analysis on popular saliency map techniques. They compare the output of a saliency map 
on a trained model with the output of the saliency map on a randomly initialized untrained 
network. They also compare the output of the saliency map for two identical model 
architectures, where the data labels have been randomly permuted for one model. The 
upshot is that often the outputs of the saliency maps have been shown to be invariant to 
changes of the model architecture/data. One interpretation of this finding is that the 
saliency maps use shortcut learning strategies, like deep learning models—whose opacity 
they are supposed to overcome. The study has been replicated regarding ML models for 
medical diagnosis (Arun et al. 2021).  

Turning to optimizing clinician–machine decision-making, a study by Philipp Tschandl 
et al. (2020) shows that the involvement of saliency maps could play an important 
pedagogical function insofar as medical students learned to direct their attention to cues 
that they otherwise would have missed. However, as Tschandl et al. point out, it is still an 
open question whether algorithmic explanations indeed lead to a decrease in diagnostic 
errors (2020, 1232). To the best of my knowledge, no study that tests the benefits of XAI 
methods for medical professionals in realistic clinical settings exists yet.  

At a more conceptual level, saliency maps have two important shortcomings: First, they 
tell clinicians where to look but not what to see. Thus, when the interpretation of certain 
areas of interest is ambiguous, they will not resolve the relevant uncertainty. Second, there 
may be a misalignment between the predictors used by the ML model and the diagnostic 
criteria/regions of interest that guide clinicians’ decision-making. In this case, algorithmic 
explanations might even drive uncertainty in the clinician: it can be difficult to determine 
whether the salient regions are mere artifacts, or whether the ML model has discovered 
meaningful patterns, which have so far eluded humans.8  

 
7 For an interesting proposal of how to establish faithfulness in XAI methods, see Watson (2022).  
8 See Buckner (2021) on the view that deep learning models might perceive objects differently than humans.  
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While some of these challenges can be met by clinically validating saliency maps (Ayhan 
et al. 2022), or by using XAI methods that report their associated uncertainty (Slack et al. 
2021b)—for the purpose of establishing their faithfulness—it becomes evident that saliency 
maps in isolation cannot do the heavy lifting required to overcome opacity in medical ML. 
Granted, an ensemble of different XAI techniques might fare better here. Even so, as has 
been discussed, the incompleteness of medical knowledge poses a barrier to a holistic 
internal evaluation of the ML model. As for optimizing clinician–machine decision-
making, the crucial question is whether clinicians would be able to process and amalgamate 
the information provided by different kinds of explanations. I tend to be skeptical here, 
considering that clinicians’ decision-making has often been described as boundedly rational 
(Mullainathan and Obermeyer 2022). Closely related, research in human–computer 
interactions suggests that people find it difficult to detect glitches even in quite simple 
interpretable models as a result of information overload (Poursabzi-Sangdeh et al. 2021). 
Indeed, putting too much emphasis on XAI techniques may increase clinicians’ mental load, 
which then increases their susceptibility to errors.  

The upshot is that XAI techniques such as saliency maps are promising tools for 
ameliorating opacity in medical ML. However, there are structural problems that make it 
unwise to be overly reliant on them. In the next section, I discuss the opposing strategy to 
XAI.  
 

 Reliabilism  
While the general strategy of XAI is to overcome the opacity problem by understanding how 
and why an ML model arrives at its predictions—thereby making potential errors in the ML 
model salient—the basic idea of reliabilism is to establish guardrails, minimizing the 
likelihood of errors occurring in the first place. The crux is that these guardrails are external 
to the model. Reliabilism is an increasingly influential view in the philosophical debate 
concerned with the implementation of ML in clinical settings, first articulated by Alex John 
London (2019) and more recently by Juan Manuel Durán and Karin Rolanda Jongsma 
(2021).  

London (2019), in particular, emphasizes the parallels between deep learning and 
medical science. His main argument can be summarized as follows: Both disciplines are 
able to develop powerful tools/interventions. And yet, knowledge of the causal structure is 
lagging behind. Because of the incompleteness of knowledge, justifications of model output 
by way of causal explanations are often misleading—especially since ML models learn by 
exploiting associations, instead of discovering causal relationships. Hence, to establish the 
clinical benefit of ML models, the proposed solution is to evaluate them according to the 
same standards as other medical interventions—preferably by way of RCTs (2019, 17). 
Consequently, neither functional opacity, nor run opacity are deemed problematic, if the 
ML model has been properly validated.  

To fully apprehend London’s view, we need to consider it against the backdrop of 
medical epistemology. Here, evidence-based medicine (EBM) has emerged as the leading 
epistemological paradigm in clinical medicine. It seeks to provide guidance on how 
clinicians can sort out reliable evidence from unreliable evidence, in order for them to 
conscientiously decide on the care of individual patients, according to the best evidence 
available (Sackett and Rosenberg 1995). The gist is that EBM has a very restrictive view on 
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what counts as good evidence; namely, different types of clinical studies, structured 
hierarchically, based on their evidentiary status. Accordingly, expert opinions rank at the 
bottom, followed by case-control studies, cohort studies, and finally RCTs—considered the 
gold standard.9  

The hierarchy is justified by the fact that the distinct types of studies are less susceptible 
to researcher biases threatening their internal validity. The reason that RCTs rank at the top 
is, given certain conditions, they are assumed able to generate statistically unbiased 
estimates of the average effect of the treatment under study. This is as a result of random 
assignment facilitating unbiased estimation of average treatment effects by rendering 
baseline prognostic factors (such as age, race, disease severity, and so on) statistically 
independent of assignment to treatment. The assumption is that RCTs are the best method 
for establishing causal claims of treatment effects (Senn 2013; Fuller 2021; see also Genin 
and Grote 2021). 

The evidential hierarchy of EBM entails that those other kinds of evidence are devalued. 
Aside from expert opinions, this particularly relates to laboratory studies trying to identify 
physiological mechanisms. These are only considered relevant insofar as they facilitate 
interpreting clinical observations (Horwick 2011, 21). 10  The skepticism concerning 
biological, anatomical, or chemical knowledge is tied to the fact that they provide only 
indirect evidence that a given treatment works (Broadbent 2019, 138–139).  

London’s (2019) (implicit) presumption is therefore that it is misguided to impose a 
double standard (Zerilli et al. 2019) to the evaluation of ML models, when compared to 
traditional medical drugs or devices. The double standard argument—with respect to the 
evaluation of ML models versus humans—has been criticized on the grounds that 
malfunctions in technical systems result from poor design choices made by humans. To 
counteract these malfunctions, it needs to be possible to scrutinize the relevant 
technicalities (Günther and Kasirzadeh 2022).  

There are good reasons for taking the double standard argument in the debate about 
opacity in medical ML seriously, not least because it is a widely held view among medical 
professionals that ML models should be evaluated like other medical devices. As a case in 
point, the US Food and Drug Administration (FDA) stipulates that ML models be classified 
as medical devices in a similar category as ultrasound or X-ray (FDA 2022). Consequently, 
they must go through the same evaluation process.  

Before addressing the limitations of this view, consider another reliabilist position, 
advocated by Durán and Jongsma (2021). Rather than focusing on medical epistemology, 
they draw on the literature on the reliability of computer simulations. Building on this, they 
contend that their account of computational reliabilism offers the right epistemic tools to 
justify a clinicians’ belief in an ML model. More precisely, their epistemic conditions are: 
(1) verification/validation; (2) robustness analysis; (3) a history of (un)successful 
implementations; and (4) expert knowledge. They also suggest that transparency could act 
as another epistemic safeguard, even though transparency in itself may not be sufficient to 
justify trust in ML models (2021, 332). Hence, whereas London (2019) could be considered 
an outcome reliabilist, Durán and Jongsma (2021) are closer to process reliabilists (see also 
Goldman and Beddor 2021).  

 
9 However, many EBM pyramids will place meta-analyses of RCTs at the top.  
10 However, mechanistic evidence is admitted in cases in which there is no clinical evidence available (Horwick 
2011, 21). 



Thomas Grote  |  11 
 

Philosophy of Medicine  |  DOI 10.5195/pom.2023.139 | Volume 4 | Issue 1 | pp.1–24 

Reliabilist positions have many merits. In particular, London (2019) should be 
commended for pointing out that any evaluation of medical ML models needs to consider 
clinical endpoints (say quality-adjusted life years) and not merely the predictive 
performance during training: for various reasons, an increase in diagnostic accuracy may 
not translate into improved patient outcomes (Genin and Grote 2021). By contrast, one of 
the merits of Durán and Jongsma (2021) is that they highlight the importance of proper 
validation and robustness checks for overcoming opacity in ML models.11 Moreover, on a 
charitable reading, their conditions (3) and (4) allow us to account for a wider range of 
socio-technical issues about the implementation of ML models into clinical settings.  

With that in mind, both accounts face significant constraints. An issue for London’s 
(2019) view is that there are differences between the transferability of drug RCTs and RCTs 
involving ML models. Setting statistical issues of extrapolation aside (see also Fuller 2021)—
and if members of all relevant groups are well represented among the research 
participants 12 —effect sizes from drug RCTs are often claimed to be transferrable to 
nonexperimental settings (see also Post, De Beer, and Guyatt 2013).13 The same does not 
apply to RCTs for ML models, given that distribution shifts can severely impact the model’s 
performance, even if it is used in another hospital in the same city. Along these lines, Emma 
Beede et al. (2020) point out how poor lighting in a hospital in Thailand led to many 
ungradable images for an ML model, used to detect diabetic retinopathy, while the same 
ML model surpassed expert ophthalmologists during training.  

And while basic research in computer vision suggests that the robustness gap between 
ML models and human perception is narrowing, this can be mainly attributed to increases 
in the size of the training datasets (Geirhos et al. 2021). For medical purposes, however, 
collecting sufficiently large datasets can be exceedingly difficult (as explained in section 2.1). 
Another weak point in London’s (2019) account is that it ignores epistemic and moral issues 
arising from the interplay of clinicians and ML models. It creates an epistemic environment 
in which the role of the clinician is basically to be deferential, which jeopardizes the 
prospects of shared decision-making (again, see section 2.1). Finally, like the problem of 
deriving optimal treatment for individual patients from average treatment sizes—which is 
what RCTs capture—the overall predictive performance of an ML model may not clinch its 
reliability in individual instances.  

When judged against the criteria of evaluating generalizability and optimizing 
clinician–machine decision-making, the results for computational reliabilism are mixed. 
On the one hand, conditions (1)–(4) in Durán and Jongsma’s’ account capture what is at 
stake. On the other hand, as it stands, computational reliabilism is too vague to be properly 
informative. The individual epistemic conditions have not been carved out for medical ML 
models. Moreover, the formal definition of computational reliability, according to which a 
reliable ML model should have a higher probability of being correct than an unreliable one 
(Durán and Jongsma 2021, 332), provides a weak justificatory basis: if the predecessor 
model has a low predictive performance, even a slightly better model would count as 
reliable. To advance the research program of computational reliabilism, it needs to be 

 
11 Note that London also underscores the need for empirical testing and regulatory procedures for the aims of 
ensuring the responsible use of ML models (2019, 20).  
12 This is, of course, a common concern regarding clinical trials.  
13 Although the extent to which causal claims can be extrapolated from RCTs is contested in the philosophy of 
science literature (Deaton and Cartwright 2018).  
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spelled out how the individual epistemic conditions should be operationalized by way of 
validation procedures and what the baselines in terms of accuracy and robustness ought to 
be for a medical ML model to count as trustworthy. Some progress in this direction has 
recently been made by Koray Karaca (2021) and Emanuele Ratti and Mark Graves (2022), 
providing nuanced accounts of epistemic risks across the pipeline of data acquisition, model 
training, model evaluation, and impact assessment.  

Outside of philosophy, the algorithmic auditing literature can be seen as a continuation 
of the reliabilist project in the spirit of Durán and Jongsma (2021). Xiaoxuan Liu et al. 
(2022) suggest various approaches for identifying and documenting performance errors in 
ML models in externally valid settings—including error analysis for patients from 
underserved subgroups. In that respect, they provide useful criteria for conditions (1) and 
(2) of computational reliabilism. However, while they should be commended for their 
detailed analysis of sources of errors and methodological recommendations, their account 
is confined to the model performance. Thus, it ignores errors that may occur at the level of 
clinician–machine decision-making. Likewise, it is unclear which assurances can 
realistically be gained by ML models in the evaluation process in light of the plethora of 
causes that potentially induce performance failures.  

To sum up, London’s (2019) reliabilist account makes an important contribution by 
exploring how opacity in ML models can be ameliorated by well-established evaluation 
processes in clinical medicine. However, my point of contention is that this account does 
not capture discontinuities between the functionality of ML models and drugs, while also 
ignoring the specific obstacles that opacity poses for optimizing clinician–machine 
decision-making. Turning to computational reliabilism, the main flaw is that its conditions 
are underspecified. In that sense, it can be considered a promising research program, rather 
than a full-fledged theory.  
 

 Overcoming Opacity through Interpretable Models 
So far, I have discussed two strategies for overcoming opacity in medical ML. Both have 
their merits as well as their shortcomings. This section deals with interpretability by design 
as an emerging opacity mitigation strategy. To evaluate this approach in a meaningful way, 
I first lay down its conceptual assumptions and then discuss a case study, presenting an 
interesting edge case of interpretable models used for clinical purposes. 
 

 Scrutinizing Model Interpretability  
Interpretability by design has been popularized by Cynthia Rudin (2019), vigorously 
arguing for the use of interpretable models over deep learning models for consequential 
decision-making—even when the latter are supplemented with XAI methods.14 While Rudin 
is interested in a broad range of ML applications, including criminal justice and public 
policy, her main arguments have recently been echoed, with an emphasis on clinical 
medicine, by Babic et al., who contend that healthcare professionals should be wary of 

 
14 Note that in addition to epistemic aspects, Rudin (2019) is also concerned with the political dimensions of 
opacity in algorithmically assisted consequential decision-making. In this paper, however, I confine myself to 
the epistemic side. 
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explanations provided via XAI methods and rather focus on the effectiveness and safety of 
the models (2021, 286).  

Rudin’s (2019) critical stance toward deep learning models is related to two factors. 
First, there is a general skepticism of XAI methods, which are often unfaithful to the original 
model and may not provide a nuanced understanding of the model’s functioning of the 
whole—or even mislead clinicians. These issues have already been addressed in previous 
sections. Second, Rudin denies that the predictive performance of deep learning models is 
necessarily more powerful than that of interpretable models. This claim might seem 
surprising, given that basically all the recent breakthroughs in the medical domain are 
related to advances in deep learning. In this respect, clinical medicine proves an interesting 
touchstone for interpretability by design. I will address this issue at a later point. For now, 
let us turn to the question of what it is that makes ML models interpretable.  

Rudin asserts that interpretability is a domain-specific notion, which is why there 
cannot be a satisfactory all-purpose definition (2019; see also Rudin et al. 2022). However, 
a common denominator in interpretable models is that they are constrained in some way—
for example, by way of monotonicity, additivity, causality, sparsity, or by incorporating 
domain knowledge (Rudin 2019, 206). Moreover, there is a close link between 
interpretability and humans’ psychological capacities. Provided that a human puts in 
reasonable effort and possesses the necessary (statistical or medical) background 
knowledge, she should be in an epistemic position to grasp how the inputs relate to the 
predicted output in an interpretable model (Babic et al. 2021, 284; see also Erasmus, 
Brunet, and Fisher 2021).  

However, instead of seeking a formal definition, it might be heuristically useful to look 
at some examples. Paradigm examples for interpretable models are logistic regression 
models or decision trees. 15  One particular reason why decision trees are considered 
interpretable is that their structure makes the interaction between the individual variables 
intelligible. With that in mind, depending on the number of individual variables/nodes, 
knowledge of the model’s holistic functioning can still be hindered (see also Lipton 2018).  

This raises some general questions regarding interpretability by design: if knowledge of 
an interpretable model’s functioning can be undermined, given certain empirical 
conditions, is the distinction between interpretable models and opaque models gradual or 
categorical? As will be shown later in this section, the fact that many interpretable modeling 
approaches within the context of clinical medicine use deep learning models, in conjunction 
with more interpretable elements, supports the latter assumption. In that respect, a 
distinction must be made between strong and moderate model interpretability, where the 
former refers to, say, regression models or decision trees, and the latter refers to hybrid 
modeling techniques.  

Moreover, if interpretability is a domain-specific notion, what are the relevant success 
conditions for an ML model to count as interpretable? Again, my conjecture is that this 
question is best dealt with through the lense of a pragmatist approach, analyzing to what 
extent model interpretability facilitates achieving certain purposes of interest.  

Consider generalizability. Contrary to XAI or reliabilism, in which the relevant concern 
is about assessing generalizability, the question initially in the foreground here is whether 

 
15 A decision tree predicts a target variable Y by traveling from a root node to a leaf, with each leaf representing 
a given variable. Here, the input space will be split at each node on the root-to-leaf path, based on a predefined 
set of rules (Shalev-Shwartz and Ben-David 2014, 250). 
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interpretable models can indeed achieve a predictive performance that is roughly as good 
as state-of-the-art deep learning models. After all, the appeal of deep learning models is that 
they excel at learning from high-dimensional data, allowing them to greatly surpass other 
existing ML model architectures at computer vision and natural language-processing 
benchmark tasks. In the same vein, the breakthrough studies demonstrating that ML 
models can achieve accuracy in image-based diagnosis at the level of medical experts were 
all based on deep learning models (Gulshan et al. 2016; Esteva et al. 2017; De Fauw et al. 
2018). Thus, when implementing a decision tree, rather than a deep learning model, into 
clinical settings, there is arguably a risk of trading off accuracy against interpretability.  

There are various responses to the accuracy–interpretability trade-off. First, as argued 
by Rudin (2019), the performance gap between interpretable ML models and deep learning 
models can be mitigated by way of more considerate modeling choices—for example, 
ensuring that the model registers the right variables and using higher-quality data. Second, 
one needs to distinguish between the discovery process and the implementation process. 
When ML models are used for scientific discovery, the promise is that they discover novel 
structures. This can guide the generation of novel hypotheses about meaningful statistical 
relationships (see also Zednik and Boelsen 2022). However, once some hypotheses have 
been refuted, we can constrain the solution space. Hence, although ML models initially 
achieve their highest predictive performance by being trained with the largest possible sets 
of high-dimensional data, some of the excessive complexity can be reduced afterward.  

Along these lines, Geoffrey E. Hinton, Oriol Vinyals, and Jeff Dean (2015) discuss how 
the knowledge of an ensemble of deep learning models can be transferred into a surrogate 
model (a simple neural network) by distilling their predictors for the different output layers. 
Wieland Brendel and Matthias Bethge (2019) develop a model architecture, called BagNets, 
blending features of deep learning models with bag-of-features models.16 When evaluated 
in ImageNet (arguably the most prominent benchmark in computer vision), the BagNet 
model’s performance came close to state-of-the-art deep learning models, while the linear 
structure of the classifier enables understanding how small image patches are integrated for 
arriving at the predicted output. This makes it easier to detect error cases and to get 
statistical guarantees in light of performance failures caused by distribution shifts.  

Moreover, for BagNets, it is possible to straightforwardly compute saliency maps that 
are faithful to the model. This is particularly useful for the purpose of optimizing clinician–
machine decision-making. Since BagNets’ predictive performance comes close to deep 
learning models, while being more interpretable by design, it is claimed to be an interesting 
compromise for clinical tasks (Ilanchezian et al. 2021). However, it also shows that all these 
models fall into the category of moderate interpretability by design. Provided that a state-
of-the-art ML model achieves an astonishing performance for a clinical task, regression 
models or decision trees are unlikely to be an equal substitute.  

Yet another argument against the accuracy–interpretability trade-off is that many of the 
seemingly most powerful models achieve their predictive performance by overfitting to the 
benchmark data. For example, in a critical review of methodological problems in current 
medical imaging, Gaël Varoquaux and Veronika Cheplygina (2022) point out that 
particularly the top 10% of medical ML models in one benchmark show high evaluation 
noise when evaluated in a different benchmark. Thus, they conclude that attempts to 

 
16 The latter represent clusters of local image features in a vector, used as an input to a linear classifier. 
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maximize the performance of ML models can have diminishing returns (2022, 3). As an 
upshot, by constraining the model architecture, or by incorporating domain knowledge, we 
may end up with ML models whose performance may, prima facie, not be as impressive as 
that of their unconstrained counterparts on benchmark datasets. However, the 
interpretable model promises more stable performance across different settings and may 
lead to better real-world outcomes.  

Granted, the argument against the interpretability–accuracy trade-off is an empirical, 
rather than a principled one. As such, it can be refuted by new model architectures that 
surpass interpretable models in well-defined benchmark tasks. Provided that interpretable 
model architectures are unable to perform on par with their state-of-the-art deep learning 
counterparts, we need to weigh carefully what the epistemic risks are when we trade off 
accuracy for interpretability. In the end, the balancing may even boil down to different value 
judgments: should we give preference to technologies in medical environments that 
perform miraculously well under certain conditions but can go horribly wrong, or should 
we prioritize ML models where we know reasonably well how they function and that their 
function is stable across different settings? In light of the high-risk setting of clinical 
medicine, where incorrect diagnoses and prognoses can culminate in suboptimal treatment 
choices, my preference is for the latter.  
 

 Case Study: Using Interpretable Deep Learning Models in Radiology  
In order to better understand the distinct properties of interpretability by design, I want to 
discuss a recent study by Barnett et al. (2021) on an ML model used to predict malign or 
benign lesions from mammographic examination. What is particularly interesting about 
this study is that the researchers use a deep learning model, made interpretable by 
incorporating expert knowledge. Consequently, the study is also valuable to understanding 
the boundaries of the interpretable modeling approach.  

Mammographic examination is an especially challenging image-recognition task. The 
evidence in the images is often ambiguous, there are few public datasets available (making 
external validation of models challenging), and the stakes are extremely high, since it guides 
the decision on whether to order a biopsy. To establish clinical confidence in the ML model, 
the objective of Barnett et al. (2021) is to develop an ML model whose reasoning process 
approximates actual radiologists. This is claimed to be beneficial regarding the 
generalizability of the model beyond training conditions (since it underpins that the model 
looks at clinically relevant aspects of an image) and optimizing clinician–machine decision-
making (since it enables detecting incorrect predictions).  

Barnett et al. (2021) rely on a case-based reasoning approach to ensure model 
interpretability, where the model learns a prototype of a given disease that it compares 
unseen instances to. This prototype is implemented by way of an attention mechanism in 
the last layers of the deep learning model, penalizing the model if it uses confounding 
information. The prototype has been trained by a subset of pixel-level annotations made by 
expert radiologists, indicating the mass margin of lesions. The attention mechanism infers 
prototypical activation patterns from these images, which then constitute the ground truth 
for the model when examining novel images (Barnett et al. 2021, Appendix, Methods).  

When using the attention mechanism to interpret a given diagnosis, it highlights the 
regions of interest in a mammographic image, while also estimating the probability of the 
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diagnosis by comparing the regions of interest to prototypical images of mass margins that 
the model has seen before (Barnett et al. 2021, 1061). Borrowing terminology from 
Catherine Elgin (2007), one might say that the attention mechanism learns 
exemplifications, which are used both to estimate confidence in the model’s diagnosis and 
to foster understanding for the clinician. The attention mechanism learns the epistemic 
properties that instantiate a given disease. If the symptoms in an image do not correspond 
to these properties, the attention mechanism will calculate the loss. This enables the 
attention map to quantify the model’s uncertainty. The ML model’s performance has been 
compared to radiologists who had to estimate the probability of a lesion being malignant. 
While the radiologists had an AUROC of 0.91,17 the model was roughly seven points under 
the clinicians (Barnett et al. 2021, 1065). Thus, the model’s performance comes close to the 
radiologists but does not outperform them.  
 

 Challenges for Interpretability by Design  
From this point of view, case-based reasoning approaches present a clear advantage over 
saliency maps since they are more closely aligned to norms of clinical reasoning. Even so, 
while I find the case-based reasoning approach to model interpretability commendable, it 
does raise some pragmatic and conceptual concerns.  

Beginning with the former, it is unclear how the performance of Barnett et al.’s (2021) 
model compares to unconstrained deep learning models, which is pivotal to understanding 
whether the increase in interpretability comes with any performance costs.18 Furthermore, 
it remains to be assessed whether the case-based reasoning approach indeed culminates in 
better model control on the part of ML developers. The same goes for a reduction of 
diagnostic errors in clinician–machine decision-making—especially when compared to 
existing XAI methods. In addition, how computationally expensive is the training of the 
attention map once we train the model for a larger array of disease classes? These are all 
important desiderata that need to be empirically addressed to clinch the superiority of the 
approach.  

More fundamentally, it needs to be asked which general insights can be extrapolated 
from Barnett et al.’s (2021) study for different ML solutions in medicine. For example, while 
it is plausible to assume that the approach works well for image-based diagnostic tasks, 
where the diagnostic criteria are usually well understood, it needs to be considered how 

 
17 AUROC (area under the receiver operating characteristic curve) is a graphical plot that shows the performance 
of a classification model at different classification thresholds. Usually, in binary classification problems, a 
decision threshold must be set. For each possible decision threshold, we can calculate the true positive rate 
(TPR) and the false positive rate (FPR) of the classifier. If we plot the respective TPR and FPR values, we obtain 
the receiver operating characteristic or ROC curve, which has a characteristic monotonic shape from the bottom 
left to the top right. We can now measure the area under this curve, which gives us a value between 0.5 and 1. A 
high value expresses that there is a threshold for which both a high TPR (also called sensitivity) and a high FPR 
(also called specificity) can be achieved, stating that our classifier is strong. A value close to 0.5, by contrast, 
expresses that our classifier is only as good/bad as a random classifier. 
18  Some studies report that their deep learning models perform better than average radiologists (see, for 
example, McKinney et al. 2020). However, in general, the validity of accuracy claims in ML-based breast cancer 
studies has been criticized on the grounds of high research bias concerning patient selection and unclear 
reference standards (for a critical meta-analysis, see Freeman et al. 2021).  
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applicable case-based reasoning can be in areas where the relevant medical knowledge is 
lagging behind.19  

At a conceptual level, the distinction between models that are inherently interpretable 
versus those that are made interpretable/explainable post hoc is blurry. Put differently, 
when I train a deep learning model to predict a given disease, does it make any differences, 
in terms of robustness and faithfulness of the explanations provided, whether an attention 
map is built into the last layers of the model or is placed on top? This question also entails 
semantic issues. What exactly does it mean for an explanation to be post hoc? Likewise, 
what constitutes the boundaries of an ML model? To be sure, none of these concerns is a 
knockout argument. Rather, they underscore need for further conceptual and empirical 
grounding—for the purpose of establishing the clinical benefit of interpretability by design.  
 

 Conclusion 
This paper has developed an account of the opacity problem in medical ML. Guided by 
pragmatist assumptions, I have argued that opacity in ML models is problematic insofar as 
it potentially undermines the achievement of two key purposes: evaluating generalizability 
and optimizing clinician–machine decision-making. Three opacity amelioration strategies 
were examined in turn, with XAI as the predominant approach, challenged by two 
revisionary strategies. Concerning XAI, it is apparent that the existing methods are unable 
to provide the necessary assurances to overcome opacity in medical ML models—at least 
when used in isolation. Reliabilist strategies, by contrast, highlight the importance of proper 
external validation of ML models by way of clinical trials and robustness checks. In doing 
so, they lay the groundwork for an evidentially diverse view on model evaluation (see also 
Williamson 2021). However, a prerequisite to meaningfully advance the research program 
of reliabilism is to be explicit about how the individual epistemic conditions can be 
operationalized. Relatedly, it needs to be clarified what acceptable performance thresholds 
are for an ML model to be considered trustworthy.  

The strengths of interpretability by design, in turn, lie in its emphasis on using simpler 
model architectures and on ensuring that the model registers medical knowledge. These two 
factors in particular are why I deem the interpretable modeling approach most promising 
for tackling the issues of generalizability and optimizing clinician–machine decision-
making. However, here too, there is a need for further empirical studies and conceptual 
grounding to clarify the distinct features of this approach and to demonstrate its clinical 
benefit. Looking beyond the individual opacity amelioration strategies, I hope this paper 
also contributes to a deeper understanding of the problem space and the solution space for 
overcoming opacity in medical ML.  
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