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Most of the epidemiological models of the Covid-19 pandemic contain the reproduction number (R) 
as a parameter. In this article we focus on some shortcomings regarding its role in driving health 
policies and political decisions. First, we summarize what R is and what it is used for. Second, we 
introduce a three-question matrix for the evaluation of any construct or parameter within a model. 
We then review the main literature about R to highlight some of its shortcomings and apply to them 
our three-question matrix. Finally, we argue that these shortcomings are important for an epistemic 
and political evaluation of R. 

 

 Introduction 
National and local institutions mostly base their strategies and policies on epidemiological 
models of the pandemic. One of the common features of most of these models is that they 
contain R, the reproduction number, as one of their parameters. In some countries, 
especially at the beginning of the pandemic, and notably in media communication, the value 
of R has been given a key role. On the one hand, R has been implicitly associated with the 
dangerousness of the virus and the overall health situation (the greater R is, the more 
dangerous the virus and the overall health situation are); on the other hand, R has been 
presented as a number that can be simply “read off from nature” and can give us “scientific” 
and “objective” information about the spread of the virus. However, both assumptions are 
far from precise.  

In this article we focus on some epistemic shortcomings of R regarding its role in driving 
health policies and political decisions. The points we raise are not new in the 
epidemiological literature, but we believe that they were generally unnoticed in many cases 
of the naïve use of models by journalists, content creators, and politicians. Also, we do not 
intend to suggest that other measures and parameters would fare better than R—in fact, 
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they all have epistemic shortcomings (for a discussion, see Amoretti and Lalumera 2021a, 
2021b). Rather, our broad aim is in line with that of other philosophers assessing Covid-19 
science and especially epidemiology, such as Alex Broadbent and Benjamin Smart (2020), 
Jonathan Fuller (2020, 2021), and Saana Jukola and Stefano Canali (2021). We think that 
assessing the epistemic credentials of current scientific models, concepts, and practices 
from the point of view of the philosophy of science is not a way of downgrading the authority 
of science in the public discourse, but rather a useful methodological contribution that 
philosophers can make to science itself. 

The structure of the article is as follows: first, we briefly summarize what R is and what 
it is used for in the current pandemic (section 2). Second, we introduce a three-question 
matrix for the evaluation of any construct or parameter within a scientific model and apply 
it to R. The matrix we propose involves three main elements: validity, practicality, and 
adequacy for purpose (section 3). We then review the main literature about R to highlight 
some of its shortcomings, and apply our three-question evaluation matrix to these findings 
(section 4). Finally, we argue that the apparent shortcomings are important for both an 
epistemic and a political evaluation of the epidemiological models using R for representing 
the current pandemic and its possible evolutions (section 5). 

 What Is R and What Is It Used For? 
Originally, R was introduced in demography to measure the reproduction of people 
(Heesterbeek 2002), to estimate whether a certain population was growing or not. In 
epidemiology, R has a similar meaning as it measures the spread of an infectious disease in 
a population. It is a function of both the biological mechanism of transmission of the virus 
and of the rate of interaction between members of the targeted population. As R represents 
the average number of people each person with an infection goes on to infect, it is an 
indicator of the contagiousness or transmissibility of an infectious disease, not of the speed 
of the infection. R is typically reported as a single numeric value and its interpretation is 
often taken to be straightforward: an infectious disease is expected to keep on spreading if 
R has a value > 1 while it is expected to decrease and eventually end if R has a value < 1 
(Anderson and May 1992). For instance, if R is 2, then, on average, an infected person will 
infect two others, who will infect four others, who will infect eight others, and so on. 

R can have different variants. Specifically, R0—the basic reproduction number—
assumes that everybody in a population is susceptible to infection. R0 thus represents the 
average expected number of secondary cases that are generated by a single case in a 
completely susceptible population (Diekmann, Heesterbeek, and Metz 1990; Van den 
Driessche 2017). The assumption that the whole population is equally susceptible to 
infection is typically false. Even at the beginning of a pandemic when a new virus emerges, 
it is difficult to establish to what extent natural immunity, or immunity developed for other 
similar viruses, can offer protection from the new one. On the other hand, the moment when 
a new virus is identified can be much later than when it starts circulating and thus it is not 
easy to figure out what the time zero is—for example, Covid-19 has been found in blood 
samples taken as early as autumn 2019 (Althoff et al. 2021), while the first models 
forecasting its spread appeared in spring 2020 (see, for instance, Ferguson et al. 2020). 

In contrast, Rt—the effective reproduction number—measures the average expected 
number of secondary cases generated by a single case in a population whose individuals 
may have gained some immunity (because they have recovered from the infection or have 
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been vaccinated), or where some control measures have been implemented (such as 
lockdown, social distancing, travel restrictions, and so on). Rt can thus be specified at a 
particular time and be used to trace changes in R as the number of immune individuals 
increases, or new restrictive measures are implemented (Nishiura and Chowell 2009; 
Mercer, Glass, and Becker 2011). During the Covid-19 pandemic, in many countries Rt has 
been one of the numbers that are reported daily and used to ground health policies and 
social measures. 

Although both R0 and Rt are a “biological reality,” they are usually calculated by applying 
mathematical models to a complex set of different assumptions (for a review of methods for 
calculating R, see, for instance, Heffernan, Smith, and Wahl 2005). In principle, 
epidemiologists can calculate R using individual-level contact tracing; that is, tracing and 
testing all contacts of infectious individuals and then averaging over the number of 
secondary cases (this, in fact, would perfectly fit the definition of R). However, unless an 
entire country’s population is regularly tested, R cannot be measured directly but only 
retrospectively, considering population-level data using various parameters, such as the 
current and previous number of positives, hospitalizations, and deaths as a result of the 
infectious disease, the duration of contagiousness, the likelihood of infection per contact, 
and the effective contact rate (Dietz 1993; Lloyd-Smith et al. 2005). To describe more 
complex scenarios, additional parameters can be considered, such as the availability of 
public health resources, particular health policies, or containment measures. For instance, 
as both R0 and Rt vary with the social dynamics of a population, even an easily transmitted 
virus such as SARS-CoV-2 has trouble spreading when people hardly meet.  

Considering these data and trends, suppositions must be made by the modeler to 
estimate what infection numbers could possibly explain them (Delameter et al. 2019). Thus, 
the estimated values of both R0 and Rt generated by population-level epidemiological 
models are constitutively dependent on numerous decisions made by the modelers (Artalejo 
and Lopez-Herrero 2013). Furthermore, mathematical methods, typically based on 
ordinary differential equations (ODEs), which have minor differences in structure and 
assumptions, might still deliver different values for R even if the same epidemiological data 
are used as inputs (Delameter et al. 2019). Jing Li, Daniel Blakeley, and Robert Smith 
(2011), for instance, consider a simple model for malaria and show that different methods 
for calculating R0 (specifically, the survival function, the Jacobian matrix, the constant term 
of the characteristic polynomial, the next-generation method, and the graph-theoretic 
method) can produce different results for R0. More recently, Roya Nikbakht et al. (2019) 
ran a simulation based on data in Canada to evaluate six different methods for calculating 
R0, proving that they can produce different results. Moreover, not only can individual- and 
population-level estimates “not lead to the same answer, as they depend on the efficiency of 
contact tracing, the use of test results (and their accuracy) vs. symptoms, etc.” (Pandit 2020, 
1643) but different individual-level models having exactly the same expectations of the 
corresponding population-level variables (incidence and prevalence) can also produce 
different values for R (Breban, Vardavas, and Blower 2007). 

Generally speaking, epidemiological models are currently used by national and local 
institutions as bases for their strategies—for example, the report commissioned by the 
European Union on the United States, France, Germany, Italy, Spain, the United Kingdom, 
and the United States (European Commission 2020). Prominent models from the beginning 
of the pandemic are, for instance, the Imperial College model, the Institute for Health 
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Metrics and Evaluation (IHME) model, and the London School of Hygiene & Tropical 
Medicine (LSHTM) model—and the Youyang Gu (YYG) model should be added for China. 
Most of these models use R.  

The first group of models has the structure of susceptible-infected-recovered (SIR), 
susceptible-exposed-infectious-removed (SEIR) models, or compartmental models—they 
represent individuals in a population as moving through three/four distinct states (or 
compartments): susceptible to the disease; exposed but not yet infectious; infectious; and 
removed (recovered or deceased). To fill in these compartments and specify the likelihood 
of transitions between them, SIR and SEIR models may use data on new positives, 
hospitalizations, deaths as a result of the infectious disease, the duration of contagiousness, 
the likelihood of infection per contact, the effective contact rate, and so on. Typically, SIR 
and SEIR models first calculate R using ODEs and then use it to figure out the spread of a 
disease across a population.  

A second group of models are “agent-based models,” which estimate how a disease 
spreads across a population by simulating various agents that interact in different social 
settings. This means that rather than applying the same rules to whole groups of individuals 
within different compartments, they explicitly model each single agent. To do so, they may 
use data on human mobility, activity surveys, mobile location, public transportation, 
census, and so on. Agent-based models can either calculate R by themselves or compute it 
separately; with respect to SEIR models, however, R is calculated per agent, not over whole 
populations.  

Epidemiological models that use R may have the goal of testing the effect of mitigation 
strategies or other policies enforced by governments, as well as the effect of other factors, 
such as schools reopening or seasonal changes in infections and deaths (a classic example 
is the Wuhan study by An Pan et al. 2020). In such cases, R is a dependent variable for the 
study. Alternatively, epidemiological models employing R may have the goal of predicting 
attack rates, infection rates, or death rates for a time and population. In this case, R is the 
independent variable, and dependent variables may be new infections or deaths. In other 
words—to put it simply—R is either “generated” by a model when it is a dependent variable, 
or it is what the model bases its prediction on when it is an independent variable. In either 
case, epidemiological models are what make R significant for policies. 

To better understand some possible interactions between model assumptions and R, let 
us briefly consider when R is used in an epidemiological model as an independent variable 
to predict, for example, attack rates, infection rates, or death rates. In a simple SIR model, 
R is usually calculated as the ratio between the disease transmission speed and the recovery 
speed. However, when the models are more complex, using age-structured populations, 
including demographic variables, considering public health interventions, and so on, it 
becomes far from obvious how to calculate R and how to interpret it. As Benjamin 
Ridenhour, Jessica Kowalik, and David Shay point out, focusing on R0, “a model that 
includes age structure, population structure, and vaccination status could easily have more 
than 100 parameters. What does R0 represent in such a model? … The salient point is that 
there are different methods [to calculate R0], and that each method can potentially produce 
a different estimate of R0” (2014, 449). This implies that employing R with the goal of 
predicting attack rates, infection rates, or death rates for a time and population is dependent 
on the models and methods that have been chosen at the outset.  
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Some countries, at least at the beginning of the pandemic, either explicitly or implicitly 
based and evaluated their policies and political decisions on the values of R. A widely cited 
opinion article in the Journal of the American Medical Association recommended this 
strategy:  

 
The US Centers for Disease Control and Prevention (CDC) should regularly report on 
the Rt for the US and for each of the 50 states so that political and public health leaders 
can gauge how well the combined organizational and individual social distancing 
measures in place around the country are working to diminish transmission of this 
virus. The CDC should then communicate this transparently to the public to increase 
public buy-in and understanding of the actions being taken to slow the spread of Covid-
19. (Inglesby 2020) 
 

Germany explicitly followed this kind of advice. On 16 April 2020, Angela Merkel famously 
explained in a video interview that R needed to be kept under 1.1, otherwise hospitals would 
be overwhelmed (Mahase 2021; Adam 2020; Hyde 2021). It has been argued that Merkel’s 
explanation involving R can also be seen as a powerful narrative—a cognitive-rhetorical 
device—which helped the implementation of mitigation strategies in Germany at that time 
(Mintrom et al. 2021). 

A further example is the case of Italy, where risk indicators for determining different 
scenarios and restrictive provisions for the twenty regions were defined in the ministerial 
decree of 30 April 2020. Among the 21 risk indicators, Rt—which is calculated based on the 
Istituto Superiore di Sanità’s integrated surveillance—played a key role, as an Rt value > 1 
was considered dangerous and led to four different scenarios and mitigation strategies. In 
the first scenario, a  

 
regional Rt above the threshold [= 1 or > 1] for limited periods (less than 1 month) and 
low incidence … [Second:] regional Rt values systematically and significantly between 
Rt = 1 and Rt = 1.25 … [Third] regional Rt values systematically and significantly between 
Rt = 1.25 and Rt = 1.5 … [Fourth] regional Rt values systematically and significantly 
higher than 1.5. (Ministry of Health et al. 2020, 18)  

 
Notice that in the four scenarios above—as well as in the case of Germany—the values of Rt 
were implicitly associated with increasing values of dangerousness of the virus. There was 
therefore a small but significant conceptual step in the use of R: what the definition of the 
four scenarios implicitly showed is a new meaning of the parameter Rt; namely, from 
reproduction rate of the virus to dangerousness of the virus. As mentioned earlier, the risk 
factors included parameters other than Rt but Rt was taken as measuring dangerousness of 
the virus. 

 Assessing Parameters: A Three-Question Matrix 
Having introduced what R is and what it has been used for in epidemiological models during 
the pandemic, in this section we prepare the ground for the evaluative question: is R good 
enough for its job? Or, more modestly, is there any shortcoming that an epistemic reflection 
on R could bring to light? These questions are surely too vague to be tackled in their current 
form. Our strategy is therefore to present a three-question matrix for the evaluation of any 



Reviewing the Reproduction Number R in Covid-19 Models  |  6 
 

Philosophy of Medicine  |  DOI 10.5195/pom.2022.78 | Volume 3 | Issue 1 | pp.1–16 

construct or parameter in a scientific model, and then to apply it to R. We do not see the 
matrix as particularly controversial, as it is built on various insights taken from the 
philosophy of measurement and psychometry (Tal 2020), and from discussions of 
prediction and explanation in scientific models (see, for example, Northcott 2017). The 
three elements of our proposed matrix are: validity, practicality, and adequacy for purpose. 

 Validity 
Does the construct/parameter/measurement really measure or represent what it is 
intended to measure or represent? We might call this the question of validity, knowing that 
there are many senses of the term currently in use—our notion of validity skips over most 
of the subtleties of the debate, pointing to the idea that “validity is a concept like truth: It 
represents an ideal or desirable situation” (Borsboom, Mellenbergh, and Van Heerden 
2004, 1063).  

For example, it has long been debated whether IQ (intelligence quotient) measures what 
it is intended to measure; namely, general human intelligence. The parameter and the 
corresponding tests were initially introduced with the aim of predicting educational 
achievement of children but over time IQ scores tended to be popularized as measures of 
intelligence (Evans and Waites 1981). Putting aside the cultural and political issues that IQ 
also raises, objections have also been raised that general intelligence is a far more complex 
phenomenon than what IQ is able to track, when considered in everyday life (Richardson 
and Norgate 2014; Serpico 2018). 

A slightly different example of a validity question can be raised about the ZIP code as a 
proxy of socioeconomic status (SES). Building on the assumption that some city areas and 
towns are more expensive to live in, social scientists and epidemiologists use ZIP codes as a 
proxy for socioeconomic status. It may then be concluded, for example, that ZIP codes 
correlate with physical activity, access to healthcare facilities, and various health 
parameters (Drewnowski, Rehm, and Solet 2007). Here, the relationship between ZIP codes 
and SES is not that of measuring but rather of representing, but the question can still be 
raised: are ZIP codes valid for representing SES? The answer is not obvious, as it might be 
objected that this is true in the United States but not for all world areas—in Europe, for 
example, old city centers may easily contain both gentrified areas and poor surroundings 
within the same ZIP code, as neighborhoods are less segregated. Thus, factors other than 
ZIP codes may be usefully integrated to represent SES, such as income, earning, 
occupational status, and so on (Ross and Mirowsky 2008). 

A much less controversial case of validity in our sense is temperature as measured with 
a thermometer in a person’s armpit as a proxy for that person’s body temperature. The 
result can be more or less accurate (see next point), but it is generally agreed that it 
measures what it is intended to measure. Body temperature is then taken to be informative 
of many different diseases and health conditions. 

 Practicality 
Can the construct/parameter/measurement be applied easily and adequately enough in its 
intended contexts of application? Is it reliable and accurate enough? 

Suppose we are reasonably sure that a construct or parameter really measures what we 
intend to measure—that is, our validation theory is strong enough. The question remains 
whether the intended measure can be carried out easily and adequately in the contexts 
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where we need to gather our data. Our practicality question covers a range of different 
issues. By “easily” we mean that technological complexity, time, and cost are proportionate 
to the task. With “adequately” we refer to both accuracy and reliability. Accuracy represents 
the degree of closeness of measurements of a quantity to that quantity’s true value. Accurate 
measurements presuppose reliability, which is a further property of yielding converging 
results from different instances of measuring, and/or from different people completing the 
task.  

For example, measuring body temperature with a thermometer under a person’s armpit 
is a fair compromise between ease and accuracy, and it is arguably very practical in our 
sense. Self-reported body weight is less accurate than hospital-scale weighing but it is also 
easier and less costly in terms of time and money, and hospital-scale weighing is not feasible 
in many contexts where researchers need to collect data about people’s weight. 

 Adequacy for Purpose 
Is the construct/parameter/measurement what we need to reach the intended practical goal 
of the scientific model we are building? 

This question zooms out from assessing the individual parameters to evaluating its fit 
with what a model is for. If our goal is to make the temperature of a dining room as pleasant 
as possible for most people, knowing the body temperature values of all individuals present 
in the room is not adequate for this purpose. More information is needed (such as subjective 
evaluations of the room condition and the room temperature) and individual body 
temperature provides information on a variety of conditions that are irrelevant to the 
thermal pleasantness of the room. Adequacy for purpose has been employed in the 
evaluation of parameters in climate change models (Parker 2009). 

 Reviewing the Literature for Problems with R 
In this section we review some shortcomings of R that have been discussed in both scientific 
and philosophical literature and apply the three-question evaluation matrix to our findings. 

(1) The value of R is notoriously difficult to measure properly. On the one hand, 
individual-level estimates (which best fit the definition of R) are difficult to obtain and may 
not correspond to population-level estimates. On the other hand, R not only depends on the 
biological features and mechanism of transmission of a virus, which may be partly 
unknown, at least at the beginning of an outbreak, but also on the social dynamic of a 
population and the rate of contact or interaction between its members, which may vary from 
region to region and time to time. Thus, assumptions and “educated guesses” must be made 
by the modelers. In Italy, for instance, R is calculated without considering positive and 
asymptomatic people, even if it is now recognized that the so-called silent spreaders play an 
important role in the transmission of SARS-CoV-2, and assuming that people whose 
infections have been contracted abroad and identified upon their subsequent return to Italy 
can transmit exactly like people who are infected in Italy, even if in certain periods 
quarantine has been compulsory for people coming from specific foreign countries (Istituto 
Superiore Sanità 2021). These assumptions may be not shared by other models. Moreover, 
the quality of data the models are built on may vary: they can be good or bad quality, scarce 
or sufficient, freshly collected or retrieved from registries and repositories filled out in the 
past; they may depend on nonepistemic factors, and so on (see points 5 and 6 below). The 
result is that the value of R may easily fluctuate as models vary in their complexity and data 
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in their quality. In line with what we proposed in section 3, this may be seen as a problem 
of validity, as the population-level estimates may not capture what the definition of R 
describes, and of practicality, as the values of R seem to lack both accuracy and reliability. 

(2) As outlined in section 2, R represents the average number of susceptible people each 
infected person with a disease goes on to infect. Being about averages, R is not always 
adequate for understanding phenomena characterized by widely varying behaviors, such as 
the current Covid-19 pandemic. For example, let us imagine that Jeff Bezos or Elon Musk 
walks into a bar crowded with 100 regular people; if so, the average wealth in that bar 
suddenly increases, probably exceeding $1 billion. However, if a philosophy professor walks 
into the same bar, the average wealth would not change that much. This example makes it 
easy to appreciate that the average is not a useful number to evaluate the distribution of 
wealth in such a bar, nor what is needed to change it. A similar thing happens with Covid-
19: a few infected people, the so-called superspreaders, disproportionately cause most of 
the new infections, while most infected people infect only a few susceptible people. For 
instance, a recent study reported that “19% (15–24%) of cases were responsible for 80% of 
all SARS-CoV-2 transmission in Hong Kong … while 69% (65–71%) of cases did not 
transmit to anyone” (Adam et al. 2020, 1718; see also Endo et al. 2020; Fang et al. 2021; 
Lau et al. 2020). This means that superspreaders are more infectious than an average 
individual, whose infectiousness is represented by R. In terms of our three-question matrix, 
this can represent a problem of validity, as it is dubious that R is truly able to measure the 
spread of an infectious disease in a population characterized by the presence of 
superspreaders. 

(3) Another shortcoming linked to the fact that R represents an average across a certain 
area is that it does not adequately consider localized clusters and local variation, such as, 
for instance, the cluster of infections that characterized Bergamo in Lombardy, Italy, in 
March 2020. On the other hand, a high incidence of infection in a small spatially distinct 
subpopulation can affect the R value of a larger region, as happened in Germany, when 
about 2,000 people, the majority of who were linked to the Tönnies meat-processing 
factory, contracted Covid-19 in the Gütersloh area, thus making Germany’s national R value 
jump from just more than 1 to 2.88 in late June 2020 (Adam 2020). Even if it were possible 
to calculate R for subregions and smaller areas, however, its value would be less accurate, 
especially when absolute infections are low, as it would apply to smaller populations. This, 
again, is a problem of validity, as it is dubious that R is truly able to measure the spread of 
an infectious disease in a population where clusters are present, but also of practicality, as 
the value of R seems to be neither accurate nor reliable enough.  

(4) When infection numbers are low, R can spike up and down for statistical reasons 
because it is an average number (Adams 2020). This means that when the number of 
existing and new cases is small, the value of R becomes questionable and useless in terms 
of providing information about an ongoing pandemic. For example, Carl Gwinnutt points 
out that  

 
if the number of cases on day x is 100, and on day x + 1 is 150, this gives an R0 of 1.5, but 
only 50 new cases … if on day x the number of cases is 50,000 and on day x + 1 is 60,000, 
not unreasonable looking at recent figures, the R0 value is 1.2 but there are 10,000 new 
cases. It would seem that when the R0 is used for small numbers of existing and new 
cases then its value is questionable. (2021, 26)  
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In terms of our three-question matrix, these fluctuations of R when the numbers of existing 
and new cases are low raise a problem of validity, as values of R in small populations cannot 
be reliably compared with those in larger ones, and of adequacy for purpose, as variations 
of R in small populations do not reflect variations of infectiousness that are significant for 
policies. 

(5) As it is unlikely that an entire country’s population is regularly tested, we have seen 
that typically R cannot be measured directly, but only retrospectively, considering different 
parameters, such as the current and previous number of positives, hospitalizations, and 
deaths; the duration of contagiousness; the likelihood of infection per contact; and the 
effective contact rate. This means that R does not capture the current status of an epidemic. 
The consequences of such time lag can be minimized by mathematical tools, which, 
however, cannot take into account other relevant considerations, such as the extra time 
needed to register deaths as a result of Covid-19 (Adam 2020). This possible delay creates 
a problem of adequacy for purpose, since real-time decisions are what one is trying to attain. 
Above all, however, practicality is the main issue here, as R is not easy to measure, and its 
value sums up all the problems of accuracy and reliability of the other measures it is inferred 
from. 

(6) Among the data used to retrospectively calculate R are mortality data. However, in 
certain countries deaths resulting from Covid-19 are poorly registered, as possibly 
happened on the Indian subcontinent (Biswas, Afiaz, and Huq 2020; Pulla 2020). 
Moreover, mortality data are themselves not transparent, as a statement on a death 
certificate that identifies Covid-19 as the underlying cause of death is not a purely 
descriptive predicate, as “it is grounded on both factual (causal chains and the patient’s 
medical conditions before and at the time of death) and non-factual reasons (the 
importance of prevention and the epidemiological clause exception)” (Amoretti and 
Lalumera 2021a, 3–4). As accuracy and reliability are involved here, this can be seen as a 
problem of practicality. 

(7) A final shortcoming can be related to the general idea that a value of R > 1 points to 
an epidemic. A common understanding of R is that “if R0 is greater than one then the 
outbreak will lead to an epidemic, and if R0 is less than one then the outbreak will become 
extinct” (Anderson and May 1992, 61), thus assuming that R0 is a threshold parameter able 
to determine whether an outbreak will cease or persist, and how much control effort is 
needed to eliminate the infection from a population. Thus, R0 has been widely understood 
as a measure of disease strength and dangerousness and used to estimate the efficiency of 
control measures and health policies.  

However, it has been argued that R0 is not always an epidemic threshold parameter 
because there are some diseases that can persist with R0 < 1, while diseases with R0 > 1 can 
die out. This can be the result of the presence of backward bifurcation, where a stable 
endemic equilibrium coexists with a stable disease-free equilibrium when R0 < 1. In this 
case, making R0 < 1 is a necessary—but not sufficient—condition for effectively controlling 
the spread of a disease outbreak (Li, Blakeley, and Smith 2011; for a discussion related to 
Covid-19, see also Nadim and Chattopadhyay 2020). Moreover, according to Nicolas Bacaër 
and M. Gabriela M. Gomes (2009), when the infectious disease is affected by seasonality, 
relatively large epidemics can occur even when R0 < 1 and the final epidemic size may not 
be an increasing function of R0. 
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More importantly, the threshold value calculated by epidemiologists using population-
level models typically based on ODEs, which describe the dynamics of the expected 
population size in different disease stages, does not always correspond to the average 
number of secondary infections; that is, to R0, obtained from contact tracing and individual-
level models. This means that not only have many threshold values been denoted by R0, 
even if they do not really refer to the average number of secondary infections (Breban, 
Vardavas, and Blower 2007; Li, Blakeley, and Smith 2011), but also that  

 
R0 may not be an accurate measure of the severity of an outbreak since R0 may fail to 
represent an epidemic threshold parameter. Thus, measuring R0 through contact 
tracing … may not help in predicting the severity of the outbreak and may not be a useful 
measure for determining the strength of the necessary control interventions. Only an 
epidemic threshold parameter can be used to design control strategies. (Breban, 
Vardavas, and Blower 2007, 282)  
 

Such a threshold parameter is different to R0. This may be especially evident when 
populations are not homogeneous (Roberts and Heesterbeek 2003; Heesterbeek and 
Roberts 2007). This can be seen as a problem of adequacy for purpose, as far as R is used 
as a threshold parameter for a population-level model to make decisions about health 
policies and the strength of control interventions.  

 Conclusions 
We have seen that R has several shortcomings, which can be differently related to our three-
question evaluation matrix.  

Validity: Does R really measure what it is intended to measure—the spread of Covid-19 
in a particular population? Being about averages, R can be insufficient to properly measure 
a phenomenon such as the current pandemic, which is characterized by widely varying 
behaviors, such as those determined by superspreaders, localized clusters, and local 
variation. Moreover, since when infection numbers are low R can spike up and down, the 
value of R becomes questionable as a measure of the spread of Covid-19. Finally, some ways 
to measure R may contrast with its own definition. This means that R does not really capture 
what is going on with the current Covid-19 pandemic. 

Practicality: Can R be applied easily and adequately enough in its intended contexts of 
application? Is R reliable and accurate enough? The success of R is probably because of the 
simplicity of its definition and the ease with which it can be applied to the current situation. 
Adequacy is less evident, though. We have seen that the value of R is difficult to properly 
measure and may fluctuate since mathematical models used to calculate it vary in their 
complexity and data in their quality. Moreover, the value of R may not be accurate enough 
when absolute infections are low, as in small populations. Reliability and accuracy can also 
be threatened by bad quality data, and the fact that some data may not be transparent, being 
determined by the interrelation of facts and values. Even if R were able to capture what is 
going on in the current pandemic, it can hardly be measured accurately and reliably enough. 

Adequacy for purpose: Is R what we need to reach the intended practical goal of the 
scientific model we are building? We have seen that when infection numbers are low, R is 
unable to give relevant information about an ongoing pandemic. Moreover, as R cannot be 
measured directly, but only retrospectively, it can hardly capture the current status of an 
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epidemic and used to make real-time decisions, which is what an epidemiological model is 
currently used for by politicians and decision-makers. Finally, if the aim is predicting the 
severity of an outbreak and thus determining the strength of the necessary control 
interventions, R is not ideal for guiding political choices. So, even if R were able to capture 
what is going on and were accurately and reliably measurable, it remains questionable that 
R is the best tool to gain relevant information about the current pandemic, make real-time 
decisions, and determine successful control interventions. 

Of course, all these problems and shortcomings are well known to epidemiologists—and, 
in fact, the epidemiological literature we have reviewed here clearly highlights and 
addresses them in various interesting ways. Still, they are under-discussed in the 
philosophical debate and often ignored in the public sphere, where R is generally used by 
politicians and media communicators in a very naïve, uncritical, and epidemiologically 
uninformed way, with the main desire to have a single “magic number” that is able to 
“really” define the development of the pandemic in a “scientific” and “objective” way. 

Given the several shortcomings of R, our review can contribute to the argument that R 
is not the best candidate to be used by politicians and decision-makers to determine public 
health responses or national and local policies during the current pandemic. The attention 
on R, which has been strengthened by the media and social communicators, may obscure 
other relevant data and epidemiological data, such as fatality rates, transmission rates, 
infectious periods, and latent periods, the number of infected people, new infections, 
deaths, hospital admissions, and intensive care patients, as well as their disaggregation by 
age, sex, comorbidities, and so on.  

On the one hand, this does not mean that any specific kind of information, or some other 
epidemiological rate different from R, would be able to mirror exactly the “reality” of disease 
development, or to magically inform health policies and mitigation strategies. Let us 
consider, for example, infection fatality rate (IFR), which estimates the proportion of deaths 
among all infected individuals, or case fatality rate (CFR), which estimates the proportion 
of deaths among identified confirmed cases (for a further philosophical discussion on these 
parameters, see, for instance, Amoretti and Lalumera 2021b). Even if they may seem more 
accurate and direct ways of assessing disease development, they not only inherit, so to 
speak, the problems related to mortality data we highlighted in the previous section but also 
suffer from systematic biases and substantial delays when the aim is to design and 
implement health policies and mitigation strategies. On the other hand, we do not want to 
deny the possible usefulness of R—given it is assessed in a critically and epidemiologically 
informed way and considered as a part of a collection of estimated epidemic features—but 
only to point out that policies based on it must not be taken as purely data driven. 

To sum up, our (rather modest) point here is that in order to estimate the possibility of 
preventing deaths and thus to decide whether to reopen schools, restaurants, and other 
public services, establish social distancing and quarantine periods, support flexible 
working, and so on, multiple information, and not an exclusive focus on R or some other 
specific parameter, can all be useful. Of course, practical considerations should also be 
pondered, such as the fact that R is an intuitive property of an epidemic and is relatively 
easy to calculate but such considerations should be made explicit, along with a critical and 
public assessment of R and alternative epidemiological estimates and data. This may be 
especially true in the case of Covid-19, as mortality is unevenly distributed and 
disproportionally affects the elderly.  
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We conclude with two general comments. First, the general and somehow uncritical 
reliance on the “magic” parameter R can be seen as a case of “scientized politics” 
(Goldenberg 2021, 91). Maya J. Goldenberg argues that there is a tendency for governments 
and institutions to base policies on supposedly value-free scientific evidence, and “rather 
than appealing to explicit values that are likely not shared by all, ‘the evidence’ is proposed 
to adjudicate between competing claims” (Goldenberg 2021, 95). But scientized politics 
rests on an unrealistic view of science and, most importantly, it cancels the role of public 
debate about values and priorities. 

Second, this article aims to contribute to a recent body of philosophical work that points 
out errors, biases, and hidden values in Covid-19 science; we assume, however, that such 
issues are possible (if not likely) in scientific practice, but they can be addressed without 
implying or suggesting that science should not be trusted, within its proper limits. 
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